Deterministic Lockstep in Networked Games

Paul Mieschke
Hochschule der Medien Stuttgart
Stuttgart Media University
Stuttgart, Germany
Nobelstralie 10, 70569 Stuttgart
mail @pmieschke.com

Abstract—Multiplayer games can increase player enjoyment
through social interactions, cooperation, and competition. Their
market popularity shows the success of especially networked
multiplayer games, which pose new networking challenges to
game developers. The main challenge is synchronizing game
state across players. Research identifies deterministic lockstep,
snapshot interpolation, and state-sync as primary methods for
this task, each with distinct advantages and disadvantages.

This work, and the master thesis this paper is based on,
quantitatively evaluated deterministic lockstep, demonstrating
its vertical (entity count) and horizontal (player count) scaling
limitations and compares the method to snapshot interpolation.
Lockstep supports minimum 16,000 entities for up to 10 players
and a horizontal scaling of 40 or more players with 1024 entities.
However, a negative correlation between entity and player count
limits was observed, which was indicated by the maximum scaling
configurations 30 players with 4096 entities or 20 players with
8192 entities. Snapshot interpolation faced a vertical limit with
4096 entities and 10 players and horizontally with 40 or more
players and 1024 entities.

The paper further contributes by comparing results to related
work, summarizing synchronization methods, proposing a hybrid
architecture model of deterministic lockstep with snapshot inter-
polation for re-synchronization and hot-joins, and deconstructing
Unity Transport Package’s (UTP) network packets.

Index Terms—games, networks, multiplayer, deterministic
lockstep

I. INTRODUCTION

Since the inception of video gaming, multiplayer games
have made it possible to increase player enjoyment through so-
cial interactions, cooperation and competition [1], [2]. “Pong”,
a local multiplayer game, requires players to be physically
present in the same location. However, networked multiplayer
games allow interaction over global distances, leveraging mul-
tiple computers connected via local area networks (LANs) and
wide area networks (WANSs) like the internet. This introduces
networking challenges like latency, jitter or packet loss, but in
particular, game state synchronization across different devices
to ensure a cohesive player experience.

Synchronizing the game state in networked multiplayer
games is a complex task due to the inherent difficulties
of maintaining consistency across distributed systems. Based
on the current research, there are three primary methods
to address this challenge: deterministic lockstep, snapshot
interpolation, and state-sync [3]-[5]. Deterministic lockstep
relies on all clients running a synchronized simulation and
only player inputs are shared, leading to low network traffic

but requiring the game to run deterministically [6], [7]. With
snapshot interpolation, the server or host sends periodic snap-
shots of the game state to clients, who then interpolate between
these snapshots to achieve smooth gameplay, at the cost of
potentially higher network traffic [7], [8]. State-sync combines
deterministic lockstep and snapshot interpolation, sharing both
inputs and snapshots. This method, however, comes with a
high implementation effort [7], [9].

The choice among these synchronization methods depends
on the specific requirements of a game genre. For instance,
strategy games, which often involve managing a large number
of entities, may benefit from the efficiency of deterministic
lockstep, whereas fast-paced action games might prefer lower-
latency methods like snapshot interpolation or state-sync.
Beyond entertainment, networked synchronization methods
have applications in distributed simulations and serious games,
indicating their broader relevance [10].

The popularity of multiplayer games is shown by their
significant share in the global games market. The most played
games on platforms like Steam often feature multiplayer
modes, highlighting the enduring appeal of shared gaming
experiences [11], [12].

In conclusion, the development of networked multiplayer
games presents unique challenges, particularly in game state
synchronization. By carefully selecting among deterministic
lockstep, snapshot interpolation, and state-sync based on game
requirements, developers can enhance player engagement and
capitalize on the growing market for multiplayer gaming
experiences.

A. Scientific question

Each synchronization method has limitations. Snapshot in-
terpolation and state-sync are limited by bandwidth, since they
require players to share large game state data over the network
[4]. This means that games with many entities like strategy
games, where players control a high number of units, benefit
from the deterministic lockstep approach of only sending
player inputs. However, literature often mentions a limit of
four [5] to eight [13] players for deterministic lockstep. In
this work these two limiting dimensions will be evaluated by
scaling a sample game both vertically and horizontally. The
vertical axis (y-axis) represents game entity count, while the
horizontal axis (x-axis) indicates number of players. § is a
scaling vector and points at a certain scaling configuration.

The goal of this thesis is to find the maximum lengths of 5 in
both dimensions: max |s]. In summary, the scientific question
can be formulated as: “What are the limitations in terms of
vertical (entity count) and horizontal (player number) scaling
of a networked multiplayer game and how does deterministic
lockstep compare to a snapshot method?”.

Snapshot interpolation was chosen for the comparison. This
is because snapshot interpolation is a counter-pole regarding
limitations. It is also conceivable that both methods could
be combined in future work, so that based on the game or
network conditions and the found limitations of each method
a dynamic switch between them can be performed, negating
disadvantages of each other method.

B. Contributions

This paper, respectively the master thesis it is based on,
contributes a summary of synchronization methods, a proposal
of a hybrid architecture model of deterministic lockstep with
snapshot interpolation for re-synchronization and hot-joins, a
deconstruction of Unity Transport Package’s (UTP) network
packets and an evaluation and discussion of said scientific
question.

II. RELATED WORK

The frequently cited paper “1500 Archers on a 28.8: Net-
work Programming in Age of Empires and Beyond” [13]
states, that the game Age of Empires is capable of synchro-
nizing 1500 game entities and supports up to eight players
using deterministic lockstep. They further mention by using a
state-sync approach the game would have been limited to a
maximum of 250 moving units.

While lockstep’s vertical scalability is seemingly unlimited
by bandwidth [14], horizontal scalability is more constrained,
with, according to [4], [5], limits of only four players. [14],
however, states a theoretical player limit of 3227.

Snapshot interpolation, used in games like Quake, shows
horizontal scalability up to 100 players on a single server,
limited more by processor capabilities than bandwidth [3],
[15].

Recent advancements in multiplayer game technology are
pushing these limits further. Fortnite and Planetside 2 represent
the current generation’s capabilities, with support for up to 100
and 2000 players. Fortnite can handle 40-50 thousand synchro-
nized entities, although some game fidelity must be sacrificed
for optimization, e.g. projectiles are not synchronized [14].

Research on input latency reveals varying tolerances across
genres. Strategy games like Age of Empires and Warcraft III
may have latencies up to 500 milliseconds without signifi-
cantly affecting game outcomes [13], [16]. In contrast, fast-
paced first-person shooters (FPS) and car racing games require
lower latencies, with performance degradation noticeable at
delays as low as 75 to 100ms, impacting accuracy and control
[17], [18].

III. STATE SYNCHRONIZATION OVERVIEW

This section conveys an overview about game state syn-
chronization and summarizes the methods deterministic lock-
step, snapshot interpolation and state-sync. However, general
knowledge in the computer science fields of networking and
games is assumed. The corresponding thesis goes into more
details.

Game state synchronization in networked multiplayer games
is crucial for maintaining a consistent player experience across
all clients. To achieve synchronization a definitive representa-
tion of the game, the game state, must be shared, that includes
game entities like player characters, non-player characters
(NPCs), and other game-related metadata like player resources.

With deterministic lockstep every client executes the com-
plete game simulation and only player commands are either
broadcast to other clients or transmitted to the server or
host, who then distribute commands. Therefore, deterministic
lockstep can be used with a client-server as well as a peer-to-
peer (P2P) topology [3], [6].

In order for this to work deterministic lockstep is based on
two principles. The game progresses in lockstep between all
clients, and the game simulation must be deterministic.

Lockstep requires every client to execute the game simu-
lation in unison. Therefore, all commands must be executed
at the same designated game times, ensuring that every
client’s simulation progresses identically. This coordination
is achieved through turns, discrete intervals where players
issue commands. To maintain synchronization, the simulation
pauses until all commands for the next turn are received. The
simulation layer includes game logic relevant systems, must
stay in-sync across all clients and can be differentiated to the
the presentation layer, which contains systems associated with
the view, e.g. user interface (UI) or particle effects. While the
simulation layer uses fixed update intervals (ticks) and turns
to stay in-sync, the presentation layer runs independently. This
allows for immediate feedback through animations or sound
effects, thus mitigating perceived input delays, that arise from
commands being scheduled for later turns (250-500ms delay)
[19], [20].

Lockstep of the simulation between all clients is required
for the game to stay deterministic, since differently timed
command executions result in diverging game states. De-
terminism means that given the same initial conditions and
sequence of inputs, the simulation yields identical outcomes
across all clients. This requires careful management of, for
example, random number generation, execution order, and data
structure ordering to prevent desynchronization. The use of
predictable random number generators (PRNGs) with syn-
chronized seeds ensures consistency. Moreover, deterministic
execution of game logic and entity updates is crucial. This
involves synchronized data structure ordering, e.g. for entity
update iterations, and avoidance of floating-point arithmetic,
since slight differences of their implementations across varying
hardware and compilers can lead to increasing game state
discrepancies [6], [7], [13], [21], [22].

Ultimately, human error can still lead to desynchroniza-
tion. Detecting game state divergence can be achieved with
checksums, compact representations of game states, usually a
number, compared across clients. When a desynchronization
was detected, an agreed-upon definitive game state, typically
from the server or host, is distributed to re-synchronize all
clients [13], [19], [21].

Snapshot interpolation operates under an authoritative
client-server topology, where the server maintains the defini-
tive game state, executing shared player commands and broad-
casting state snapshots to clients regularly. Clients act as
”dumb terminals”, rendering the game state based on received
snapshots without performing any game logic simulation. This
method requires the use of interpolation techniques, such
as Hermite interpolation, to smooth out entity movements
between snapshots. To mitigate the high bandwidth demand,
quantization and delta compression can be employed, optimiz-
ing snapshot data size [3], [4], [8], [23].

State-sync combines snapshot interpolation and determinis-
tic lockstep, allowing clients to not only receive state snapshots
from the server but also simulate the game state locally.
This method also involves transmitting player commands from
clients and applies a client-server topology. Latency compen-
sation techniques, such as reconciliation and rollback, adjust
the game state based on newly received snapshots, ensuring
consistency despite network delays. A priority accumulator
queue further optimizes bandwidth usage by prioritizing the
transmission of important game entities within snapshots,
thereby balancing network load and game fidelity [7], [9], [24].

After covering three game state synchronization methods, they
can be summarized visually in figure 1 and by category in table

. Server/host dx Server/host dx
Clients bx
+ commands snapshots
commands . . N § .
(client simulation) | (server simulation)

Deterministic rp— Snapshot
lockstep Y interpolation

Client-side prediction and
reconciliation (rollback)

Fig. 1. Game state synchronization summary. The red arrow means “uses”,
and the blue arrow means “could use, but is not part of a default implemen-
tation”.

IV. IMPLEMENTATION
A. OSI model integration

In order to provide a first overview and establish the imple-
mentation in the networking context, implementation details
and custom layers can be added to the OSI model. This OSI
model integration is depicted in figure 2. The figure includes

TABLE I

GAME STATE SYNCHRONIZATION SUMMARY BASED ON CATEGORIES.

Category snapshot state-sync deterministic
interpolation lockstep

Compatible (authoritative) (authoritative) (authoritative)

topologies client-server client-server client-server

and P2P

Game simula- | Server or host | Server or host | All clients

tion only and clients

Networked Commands Same as snap- | Commands

data by clients and | shot interpola- | (snapshots only
snapshots by | tion on desync)
server or host

Bandwidth us- | Relatively high | Relatively Relatively low

age medium

Latency Relatively Relatively low Relatively high
medium

Challenges Bandwidth lim- | Implementation, | Determinism,
itations, snap- | adequate possibility of
shot size opti- | predictions desynchroniza-
mization tion

Primary Vertical Vertical Horizontal

scaling

difficulty

Cheating The game state of other players cannot be manip-
ulated, but concealed information can be extracted
(e.g. remove fog-of-war (FOW))

Fairness Host has | Same as snap- | No advantages
advantage shot interpola- | of any client
since data is | tion due to lockstep
there first

Hot-join / re- | Possible Possible Possible with

connect snapshots

Genre recom- | Similar to | Fast-paced Games with

mendation state-sync, less | games with a | many entities
optimized conservative and marginal

entity count, | latency

e.g. FPS or | demands,

racing games e.g. real-time
strategy (RTS)
or turn-based
games

all seven default layers as well as two custom layers above
with their employed implementations to the right. Yellow
highlighted cells indicate custom implementation code.

The foundational layers (one to three) comply their conven-
tional roles, utilizing default protocols for packet transfer. At
the transport layer (four), UDP is preferred due to its suitability
for real-time game data transmission. UDP is further supported
by the choice of the Unity Transport Package (UTP) as the
underlying networking framework, that resides in layers five
to seven.

Layer eight, designated as “netcode”, is a bridge between
low-level networking and game logic. This layer abstracts
away networking complexity by providing APIs for session
management and command transmission. Building on top of
that, one synchronization system must be used, that keeps
game states in-sync. A snapshot and deterministic lockstep
synchronization system have been implemented for the eval-
uation, but, in general, implementations of the OSI layer
integration model can be exchanged.

The final layer nine contains the game logic, where game-
play mechanics and high-level networking logic converge.

] Game Logic

Synchronisation
8 Netcode S
Network System
7 Application
6 Presentation UTpP
5 Session
4 Transport ubpP
B Network
2 Data Link Defaults
1 Physical

Fig. 2. OSI model integration. Layer 1-7: OSI layers and their employed
implementations. Layer 8-9: custom layers and implementations developed
on top of the OSI model [25]. * e.g. snapshot system, lockstep system, ...

B. Architecture model

Hybrid Systems

Entity Manager I

Synchronization Systems

Game Logic

Net Random Provider

D [

Snapshot System Lockstep System

[Snapshot Extraction I Snapshot Application J

'
&N .
Host ! Client
Save Load,
'
Command Processing Snapshot Processing
\ Command Data P
t

Network System

Synchronization Guard

Time Management (Turns and Ticks)

Command Management.

Command Buffers

Send Buffer & Ack Buffer

N
—

DL Snapsh

)

—
L

Service Processing

(De-)Serialization of Service Data RN SN Sthent

(__ Network Message Processing
[Statistics Provider

Transmit Func. I Receive Event

(UGS (for online MP))

(oo | s]*Q

/ utp
Feature Pipeline [

Session

simulator Management
Connections

S D

Network Driver (using UDP)

Q Platform abstraction

T
Lower layers
v

NBE\4INSE Sy M

Fig. 3. Implementation architecture model. The integrated OSI model layers
five to eight and partially nine are shown in more detail from bottom to
top. Each component builds on top of lower components. Yellow highlighted
components may be disabled in production for a performance increase.

The implementation architecture model is illustrated in
figure 3. Unity Transport Package (UTP, OSI layers 5-7) is a
low-level networking framework supporting client-server/host
topologies and is developed for the Unity game engine. It pro-
vides convenient platform abstraction offering cross-platform,
UDP socket-based network drivers [25]. Pipelines can be used

to extend UDP with features like fragmentation, reliability
and sequencing. Fragmentation ensures packets stay within
the maximum transmission unit (MTU) limit, while the reli-
ability stage implements a TCP-like acknowledgment system
for guaranteed data transmission. Sequencing is part of the
reliable stage and maintains the order of packets. There is also
an unreliable sequenced stage when only order is essential.
The simulator stage, only used during development, emulates
various network conditions. A statistics stage provides upper
layers with valuable metrics for analytics [26].

The network system is a custom high-level networking frame-
work providing LAN and WAN networking functionality to
both the synchronization systems as well as the game logic.
At its core are the session management and network message
processing components.

Although UDP is not connection-based, UTP implements
protocols on-top for a connection-based communication.
Therefore, the session management is responsible for connec-
tion management and lobbies. This involves establishing and
disconnecting connections, alongside lobby management tasks
such as hosting, joining, and configuring lobbies. Different
procedures are needed for LAN and WAN environments, with
WAN connections using the Unity Gaming Services (UGS)
for relayed client-server communication and a lobby service.
These procedures only differ up until this component. For later
components the process is unified regardless of WAN or LAN.

Network message processing is central to transmitting
and receiving network messages, involving the serialization
and deserialization of message headers. Serialization converts
game entity states into a byte format for storage or network
transmission, while deserialization reverses this process. The
system delegates further processing to specialized components
based on the network message type byte identified in the
header.

A first specialized processor is the service processing com-
ponent, which manages service-related messages (header type
byte is SVC) for functionalities like connection management,
heartbeats, and lobby updates.

Additionally, the network system includes simulator man-
agement and statistics provision components for analytical
purposes during development, allowing the simulation of non-
optimal network conditions and the collection of performance
metrics for later evaluation.

The final component is network ID (NID) management, A
NID is a unique, synchronized ID across all clients and server.
Game entities and connections, respectively players, all have
an NID. There are various ID types: local IDs, managed by
the game engine (Unity [27]), differ across client instances.
Static NIDs, consistent across clients given the same game
build is used, identify unchanging game entities like buildings.
Dynamic NIDs are for entities spawned during gameplay,
requiring a synchronization process across clients. Connection
NIDs represent clients, respectively players.

When using a snapshot synchronization method, dynamic
NID assignment and synchronization is straight-forward, with

servers or hosts assigning NIDs for new entities and dis-
tributing these through snapshots. However, deterministic lock-
step involves a more complex process. When clients issue
commands to spawn entities, the host registers NIDs before
the actual entity spawn, ensuring uniqueness. This NID is
then broadcast with the acknowledged command, and upon
execution in a later turn, entities are spawned and assigned
the NID across clients.

The first synchronization system is the snapshot system. It is
responsible for a regular snapshot distribution on the server-
side. In theory, it should also handle the interpolation of
snapshots with buffers. However, in this implementation no
interpolation is performed, since the focus is on deterministic
lockstep. Snapshot extraction is the process of creating a snap-
shot at a certain game time based on all entity states retrieved
from the entity manager and other arbitrary serializable data
that can be provided by the game logic (opt-in non-entity data,
e.g. abstract information like player gold or experience). This
is only performed on the server or host. The clients, on the
other hand, only receive snapshots. Snapshot application is
then used to deserialize the snapshot and set the player’s game
state according to it.

Similar to the service processing component, snapshot pro-
cessing handles snapshot network messages (SNP), while the
commands processing component manages command network
messages (CMD).

The lockstep system has own command and snapshot pro-
cessing components. Usually, only the commands processor
is required. But, because the presented model is capable
of resynchronization after desyncs and supports joining a
game after it has been started (hot-join), a snapshot processor
tailored to the lockstep system is needed. This makes the
system a lockstep-snapshot hybrid.

Command management is more intricate for the lockstep
system compared to the snapshot system. Instead of im-
mediately executing a received command, a synchronized
execution is mandatory. Therefore, two command buffers are
used. While the send buffer handles the timed transmission
of commands, the ack buffer stores and executes received
commands in the correct turn. In this implementation, the send
buffer immediately transmits the command.

The ack buffer is a ring buffer and illustrated in figure 4.
The ring buffer contains four segments. In practice, segments
are represented by a list with dynamic length. Each segment
is designated a turn N and collects all received commands
scheduled for that turn by adding it to their list (turn buffers).
Since there are only four segments that can be mapped to
four turns at the same time, a ring index ¢ is introduced.
t is equal to the currentTurn mod segmentCount, where
segmentCount is 4, and is used to access segments stored
in an array data structure up to 3 turns ahead with the
formula: [t + (turn — currentTurn) mod segmentCount].
The ring is rotated counter-clockwise after every turn, which
is done using the formula: ¢t = ¢t + 1 mod segmentCount.

Ack Ring Buffer

Fig. 4. Ack ring buffer. NV is the turn number and ¢ is the ring index. Illustrated
in red is the rotation direction of the ring (counter-clockwise).

When receiving a command it is added to the segment
[t + (commandTurn — currentTurn) mod segmentCount).
Every segment has a specific functionality based on a ¢ offset.
The segment at [¢ + 0] (current turn) executes its commands
at the start of the turn. Segment [t + 1] and [t + 2] both
collect received commands, that will be executed in the next
two turns. The commands issued in the current turn N are
scheduled for turn /N + 2, which means that commands issued
by the host immediately go into the segment [t + 2]. Finally,
segment [t+ 3] clears all collected commands on turn start for
its next ring iteration.

At the core of the lockstep system is the time management
component. This component enforces a timed execution of
commands in lockstep. Additionally, it governs simulation
progression with turns and ticks, pausing the simulation (tick
progression) in case commands for the next turn are missing.
The lockstep timing of network messages is clarified in figure
5 in a typical game flow scenario. For clarity, the turn duration
in the figure is 200ms compared to the used duration of 250ms
in the actual implementation.

Figure 5 depicts an exemplary network message exchange
between three clients over time subdivided into turns, where
the middle client is the host. Client 1 has an RTT of 50ms,
client 2 100ms. Host commands are omitted to declutter the
figure, but, in practice, when the host issues a command
it is broadcast to all other clients (acked), while the host
immediately keeps the command in his ack buffer. In case
a server is used, no commands are issued. There are three
phases: the pre-lobby phase, e.g. menu navigation before
joining a lobby; the lobby phase, where players are connected
and lobby information is exchanged; the game phase, which
is the actual game (game time). Arrows represent network
messages and are categorized by color: cyan, message from
client 1; blue, acked message of client 1 from the host; light
purple, message from client 2; dark purple, acked message
of client 2 from the host; black, message from the host (not
complete). Each message is either a SVC (service message)
or CMD (command message) — SNP (snapshot messages) are
not included in this scenario.

Game Phase
A

A

Lobby Phase

...Pre-Lobby Phase

Messages are named in the following scheme:

[origin?: H(ost) |C(lient)1/2] [turn?:
T(urn)l..N] [message function].

A “sent” message is transmitted from a client to the host,
whereas “acked” messages are acknowledged and broadcast
by the host to clients.

The general commands distribution flow is: client sends a
CMD to the host = host adds the command to his ack buffer
and acks the CMD (broadcasts the acknowledged command to
all clients) = each client receives the acked CMD and adds
the command to their ack buffer.

The figure is further explained in the thesis, which is out-
of-scope for this paper.

P

CMD
C2TSEndTurn
sent

acked
¢ omp
“C2T4EndTurn
acked

cMD
C2T4EndTurn......1
sent
(slow)

&

&

&
Execute CMDs

Execute CMDs
Execute CMDs
&

&

cMD
C1T4EndTurn
acked
ked

sent §
CMD
C1T4EndTurn

I T4EndTyrm

The last component of the lockstep system is the synchro-
nization guard. Since simulation determinism is challenging
and game state desynchronization is possible, this component
detects synchronization anomalies and manages the resynchro-
nization process. In order to monitor synchronization each
client generates a checksum of his game state every 20 turns,
or approximately 5 seconds. The game state checksum (hash)
algorithm in a real-time game context should be fast and must
detect data permutation, e.g. wrong order in data structures that
lead to diverging states. A reasonable collision safety must be
given, whereas security is of low importance.

In the event of a checksum mismatch between host and
clients, a resynchronization process is triggered: host clears
the ack buffer, sets the turn to N — 1 and max. ticks (end of
the last turn), generates a new random seed and broadcasts
a specialized snapshot with additional data (turn N — 1 and
the new random seed) = clients receive the snapshot, apply
it to their game state, clear their ack buffer, set their turn to
N — 1 and max. ticks, initialize their random generator with
the seed and send a resynced SVC message back to the host
= once, the host has received a resync SVC from every
client, he broadcasts end turn CMD messages for each client,
that are scheduled for the next turn, so that the simulation can
continue. During the resynchronization process all commands
are ignored. There can be a maximum command loss of two
turns. Also, the game will have a delay/lag based on the time
the resynchronization process takes.

q

Delayed
cMD
C2T3EndTurn
(jitter)

4

275ms 300ms

2T3ENdTurm e
~, acked
4

acked
o Y2 00E LT s

- m - m - - - - - - - - - - - - Maxdelay400ms (2tumns)= = = = = = = = = = = = = = = = = = =

250ms 275ms
A
™MD
C1T3EndTurn’
acked

225ms 250ms
225ms 250ms

CMD ica13EndTurn

cMD
C1T3EndTurn/
k acked
n2
T3EndTumn
sent ;
1 CMD

“C2W3EndTurn
4 sent

G

i
. 200ms
200ms

175ms 20qms
X
cMD CMD
. C2T3A C1T3B
sent acked
cmp
T CIT3A
acked
«
150ms

125ms

75ms 100ms

4
Client 2 (RTT 100ms)

CMD
1738
sent
* Host commands omitted for decluttering,
in practice the host broadcasts his already

acked commands to all clients

cMD
C1T2EndTurn
acked

50ms 75ms
acked

25ms
25ms
cMD
| C2T2EndTurn
_sent

Client 1 (RTT 50ms)
Host*

CMD Co12€ndTurn
‘

G1T2EndTyrn

\F
n1

<<
+25ms]

1
. Oms

+50ms

cMD
C2T1EndTurn
acked
EeYl)
C2T1EndTurn
acked

. CMD
C2THEndTurn
g SEI_\[

cMD
C1T1EndTurn
acked
CMD
C1T1EndTurn
acked

1EndTurn
sent

P

=)
s
(5}

M|
HT1EndTurn
acked

Loading Game

CMD
HT1EndTurr
acked

Hybrid systems bridge the gap between networking and game
logic layers, functioning in both singleplayer and multiplayer
modes through a unified interface. A cross-platform PRNG en-
sures determinism across game instance, synchronizing seeds
over the network in multiplayer, but also fully operational in
singleplayer. Seed initialization occurs during game start or
resynchronization. The entity manager handles both static and
dynamic game entities. It ensures deterministic execution by
updating entities in NID order and is used during serialization
ol N . E--- and deserialization of snapshots.

Loading Game

Loading Game

svC
i StartGame

A
SvC

*., e.g Heartbeat,
Waiting in Lobby

Lobby infos
A 4

Waiting in Lobby

A
svC
e.g. Heartbeat,
.
v

Connect
sve

Cl1Connect

Waiting in Lobby
sve

C2Connect
sent
Connect

SsvC
C1Connect
sent

C. Hot-join / Reconnect
Fi

&

g. 5. Lockstep network message timing. . . .
Contrary to some literature [19], [28], with the implemen-

tation model of this work it is possible to support hot-join

and reconnecting to a running game. This is possible, because
hot-joining is the same process as resynchronizing game states
after a desync has been detected by the synchronization guard
component. The only additional process is the connection
establishment before the snapshot can be exchanged.

D. Deterministic lockstep and snapshot interpolation hybrid

Based on the presented implementation architecture model
(figure 3), it is conceivable that both synchronization methods
could be combined, so that, based on the game or network
conditions, a dynamic switch between them can be performed.
This way the disadvantages of snapshot interpolation could be
negated by the advantages of deterministic lockstep and vice-
versa. For example, snapshot interpolation is used when many
players participate in the current game scene, but lockstep for
scenes with many entities or when bandwidth is limited.

Switching methods from lockstep to snapshot interpolation
is straight-forward. The lockstep system is disabled and stops
governing simulation with turns, while the snapshot system is
enabled and from now on only snapshots are distributed by
the host. This is a fluid transition with no delay. Switching
from snapshot interpolation to lockstep, however, comes with
a delay, since, after disabling the synchronization and enabling
the lockstep system, the same resynchronization process of the
synchronization guard component is used.

V. EVALUATION

Based on the implementation of section IV the scientific
question of this work is evaluated and discussed. Before
that, the underlying UTP networking framework used by the
implementation is briefly analyzed with regards to its network
packet structure.

A. UTP packet evaluation

To this date, the documentation of UTP does not include de-
tailed information about the exact data down to the byte level,
that is transmitted. Therefore, Wireshark [29] was used to
deconstruct and analyze UTP packets of a localhost loopback
connection. Figure 6 captures the connection establishment
and heartbeat process and highlights and explains important
parts.

Time | Source
432.552881
432.554016
i— 433.548555
T~ 433.562103

| Destination
127.0.0.1
127.0.0.1

| Protocol | Lengtt| Info (ports) payload e
Ul 45 60546 - 64977 L

45 64977 - 60546 Len:

41 60546 - 64977 Len:

lower layers data (irame, P,
both 7700 00 01 are hexadeci

loopback IP 127.0.0.1, port alterating
[between ec 82 = 60546 (client) and fd d1 (host)

(only co <
02 00 00 00 45 00 00 29 3a a7 00 00 40 11 00 00

7f 00 00 01 7f 00 00 01 fd dl ec 82 00 15 fe 28
55 54 50 01 02 7a 29 83 f4 b2 a@ aa 3c

02 00 00 00 45 00 00 87 92 00 00 40 11 00 00
7f 00 00 01 7f 00 00 ec 82 fd d1 00 11 fe 24
03 7a 29 83 f4 b2 a0 aa

8 type heartbeat with
02 00 00 00 45 00 00
7f 00 00 01 7f 00 00
03 7a 29 83 f4 b2 a@ aa 3c

£ type heartbeat with

40 11 00 00
00 11 fe 24

from host to client

Fig. 6. UTP packet deconstruction: connection process and heartbeats.

Figure 7 demonstrates a reconnection sequence, where client
port and connection ID is changed. Figure 8 shows data
exchange using the reliable pipeline.

Time | Source
436.213331
436.228101
436.229176
il 437.229625
437.237295

| Protocol | Lengtt| Info
41 60546 - 64977 Len=9 clentdisconnect
45 54969 - 64977 L ¥ o
45 64977 - 54969 L

41 54969 - 64977 Len=!
41 64977 - 54969 Len=9

| Destination
0.0,

127.0.0.1
02 00 00 00 45 00 87 92 00 00 40

7f 00 00 01 7f 00 ec 82 fd d1 00 client ¢ nect
02 7a 29 83 f4 b2 3c L}) EEEER

00 00 00 45 00
00 00 01 7f 00
54 50 01 02 59

4c 3e 00 00 40 11
fd d1 d6 b9 00 15 [l host connect
b9 61 70 bo 8e

00 00 00 45 00 8b 7f 00 00 40
00 00 01 7f 00 dé b9 fd d1 00
03 59 2a 40 b9 61 8e

Fig. 7. UTP packet deconstruction: reconnection process.

| Source | Destination | Protocol | Lengtt|Info
2783 127.0.0.1 127.0.0.1 uop 61 54969 - 64977 Len=.

5122 127.0.0.1 127.0.0.1 UDP 55 64977 - 54969 Len=

02 00 00 00 45 00 00 39 8c ad 00 00 40 11 00 00
7f 00 00 01 7f 00 00 01 d6 b9 fd d1 @0 25 fe 38
01 59 2a .40 b9 61.70 b0 8e 01 00 00 00 00 00 00
ff ff ff ff ff ff 00 co 01 2a 00 00 00

sent data:
01=1=network message type byte: command (CMD)
2a=42 byte (arbitrary test data)

02 00 00 00 45 00 00 33 e3 3e 00 00 40 11 00 00
7f 00 00 01 7f 00 00 01 fd d1 d6 b9 @0 1f fe 32
0020 01 59 2a 40 b9 61 70 bo_ 8e 01 01 00 e9 00 00 00

0030 00 00 ff ff ff ff 00

Fig. 8. UTP packet deconstruction: sent data.

Lastly, figure 9 illustrates the functionality of the reliable
pipeline, particularly the handling of packet acknowledgments
during a temporary client disconnection.

client temporary
=28 unconnected:

| Protocol | Lengtt| Info
0P Ly .
Len=29 host data (reliable)

451.745577 127.0.0. upP 61 64977 - 54969

0.0.1
451.837436 127.0.0.1 upP 61 64977 - 54969 Len=29 hostdata (reliable)
451.928266 127.0.0.1 ubP 61 64977 - 54969 Len=29
452.020196 127.0.0.1 UpP 61 64977 - 54969 Len=29
452.111793 127.0.0.1 UbP 61 64977 - 54969 Len=29
452.203906 127.0.0.1 upP 61 64977 - 54969 Len=29
452.269455 127.0.0.1 UpP 41 54969 - 64977 Len=9 clentheartbeat
452.273201 127.0.0.1 UbP 55 54969 -+ 64977 Len=23 cienta
453.212491 127.0.0.1 upP 41 64977 - 54969 Len=9 to
AR2 27384E 7801 1o A1 EAGRQ . RAQTT 1an—a e

Fig. 9. UTP packet deconstruction: reliable pipeline.

In summary, there are four found UTP message types: 01
for data, 02 for disconnection, 03 for heartbeats, and 01
in combination with the “UTP” header prefix for connection
(55 53 50 01).

One final note about packets in a relay-based WAN scenario.
Packets were analyzed in this scenario as well, but, except for
the finding, that packet size generally increases, deconstruction
turned out to be difficult, presumably due to encryption.

B. Evaluation setup

In order to quantitatively evaluate the scientific question, the
implementation provides a command to initiate a 20 second
evaluation of a certain scaling configuration. To determine
vertical limits this command distributes the desired entity
count across all clients evenly. The command also instructs
the statistics provider component of each client to start writing
statistics to a file for later analysis. To scale horizontally
a total of eight computers were available, where each of
them could run five instances of the evaluation build. This
results in a maximum of 40 simulated clients. For comparison
of deterministic lockstep to a snapshot method, snapshot
interpolation was selected due to said reasons.

1) Synchronized data: The game state is made up of a
set number of entities. An entity has the following synchro-
nized data: ushort type (2 bytes), NID id (32 byte string),
Vector2D position (two 4 byte floats = § bytes), NID
playerld (32 bytes), Vector2DInt coordinates (8 bytes),
byte color (1 byte). So, in total one entity uses 83 bytes. A
UTP packet has a 27 byte overhead. To synchronize one entity
the packet would therefore have 110 bytes. If multiple entities
are synchronized in a snapshot they are packaged together,
so that the overhead is only applied once (fragmentation
disregarded). Sending a 1024 entities snapshot results in a
packet size of about 85kB and 16,000 entities require 1.3MB.

2) Hardware and environment: Inhomogeneous computer
hardware was used in order to replicate the diverse cross-
platform environment of the real world as best as possible.
Seven of the eight computers were Windows 10-based (version
22H2) Acer Aspire V Nitro Black Edition Gaming Notebooks.
They are equipped with an Intel Core i7-6700HQ CPU @ 2.6
GHz, an NVIDIA GeForce GTX 960M GPU, 16GB RAM, an
SSD hard-drive, a full HD 60 Hz display, and a Qualcomm
Atheros QCA61x4A wireless network adapter, that supports
IEEE 802.11ac with a maximum speed of 867 MBit/s [30],
[31].

A macOS-based (version Sonoma 14.0) 2021 16” Apple
MacBook Pro was used as the host and for additional 4 clients.
It is equipped with an M1 Max CPU/GPU, 32GB RAM, an
SSD hard-drive, a 3456x2234 120 Hz display, and a wireless
network adapter supporting IEEE 802.11ax and 802.11ac with
a maximum speed of 866 MBit/s [32], [33], [34], [31].

The computers were placed next to each other and con-
nected to the router wirelessly. Each computer had a distance
of about 5 meters to the router. The router is a Vodafone
Station supporting IEEE 802.11ax and 802.11ac at a maximum
data rate of 1 GBit/s [35]. The internet provider was Vodafone
as well with a Vodafone Cable 250 MBit/s downlink and 40
MBit/s uplink contract.

The evaluation took place in Karlsruhe, Germany on the
17th February 2024 from about 8 to 11 pm. Prior to the
evaluation the actual internet speeds were tested. On the
Windows computers an average download speed of 255.5
MBit/s and upload speed of 47.2 MBit/s were recorded. On
Mac a download speed of 253.9 MBit/s and upload speed of
35.4 MBit/s was reached.

The UGS relay server was reported to be “europe-west4”,
which should be located in the Netherlands according to [36].

3) Metrics: The statistics provider component of each
client collects and writes certain metrics into a CSV file every
second for 20 seconds, which results in about 20 samples
per evaluation configuration per client. The following metrics
are considered and analyzed later: RelTime/Time (time since
evaluation start), FpsSmoothed (smoothed frames-per-second),
MaxAvgRtt (maximum RTT of all connections of the client),
DeltaPacketsTx (sent packets since last sample), DeltaPacket-
sRx (received packets since last sample), DeltaPacketsTxRe
(re-sent packets since last sample), DeltaPacketsRxRe (du-
plicate packets received since last sample), DeltaPacketsLost

(lost packets since last sample), DeltaBytesTx (sent bytes
since last sample), DeltaBytesRx (received bytes since last
sample), DeltaBandwidth (sent and received bytes since last
sample), DeltaTicksLagged (lagged ticks since last sample),
DeltaDesyncs (detected desyncs since last sample).

4) Process: Prior to the actual evaluation, hardware per-
formance limits for a playable game standard of 30 FPS were
determined. Tests revealed Windows machines could support
up to 16,000 entities running five instances, while Macs
handled up to 32,000 entities. This assessment, excluding
multiplayer synchronization, focused on finding CPU and GPU
limits for entity processing and rendering.

For the method evaluation the following parameters were
used:

e 8 automated player commands per second per client
(more than realistic)
o deterministic lockstep:

— fixed turn duration of 250ms, no dynamic turn dura-
tions

— 15 ticks per turn (one tick is 16.666ms or 60 FPS)

— synchronization guard checks every 5 seconds (4 per
20 second evaluation)

« snapshot interpolation:
— 1 second snapshot distribution intervals

The chosen 1-second snapshot interval, while not ideal
for production games requiring below 100ms intervals, is
justified by a lack of snapshot optimization, like compression.
The DeltaBandwidth metric yields similar bandwidth usage
between rare but large snapshots used by this implementation
compared to a frequently sent and optimized version presented
by [23].

The following scaling configurations each were evaluated
for 20 seconds:

o With deterministic lockstep, snapshot interpolation:
— In a LAN, WAN:
* For 10, 20, 40 players:
- Evaluate 1024, 4096, 8192, 16,000 entities.

Other configurations were performed irregularly, e.g. 8
players or 2048 entities. Additionally, the lockstep resynchro-
nization process, and the effects of high latency (200ms), jitter
(100ms) and packet loss (10%) of incoming and outgoing
packets on both methods were tested.

C. Results

In the thesis, every metric is evaluated to discuss vertical
and horizontal limitations in LAN and WAN. However, this
in-depth analysis of all the collected data would be too long
for this paper. Thereby, the paper continues directly with a
comprehensive conclusion of the evaluation and discussion.

After evaluating and discussing the various metrics, configu-
rations and scenarios a conclusion to the scientific question can
be formulated. Deterministic lockstep has no indicated vertical
scaling limitation with a player count of up to 10 supporting
16,000 or more entities. A horizontal scaling limitation could

not be found either under given circumstances and determinis-
tic lockstep is confirmed to work with 40 or more players while
handling 1024 entities. However, performance degrades when
scaling both dimensions, which demonstrates dependent limits
as a negative correlation between entity and player scaling.
For instance, a scaling configuration of 40 players and 4096
entities or 30 players and 8192 entities was not possible. The
projected scaling graph therefore can be depicted by figure 10.

o
)
\@b

%,
(o
%,
%s.
N
N\
N
N
\

player count (x) ——e—>

ﬁ entity count (y) v,
, /7
/7
4

Fig. 10. Projected scaling graph through evaluation: dependent limits with
many maximum scaling vectors.

The main reason for performance degradation are simulation
pauses induced by lagged ticks, which in turn can be caused
by hardware limitations, high RTTs, respectively latency and
jitter, or implementation flaws. Regarding hardware limita-
tions, some computers already had low FPS with 8192 entities
and 10 players. This confirms a disadvantage of deterministic
lockstep: scaling horizontally also increases the probability of
slower clients, that degrade game experience for all players.

Unfortunately, the resynchronization functionality as part of
the lockstep-snapshot hybrid system did not achieve desired
results. In LAN 4096 entities and in WAN only 1024 entities
could be resynchronized between a maximum of eight players.
This limitation also resulted in latency, jitter and packet loss
hindering deterministic lockstep scaling, since they introduced
desyncs, that can only be handled in said configurations.

The unoptimized snapshot interpolation implementation
achieved a vertical scaling limit of 4096 entities with 10
players and a horizontal scaling limit of 40 or more players
with 1024 entities and therefore has a lower entity limit
compared to deterministic lockstep. Jitter and packet loss
have a negative impact on snapshot interpolation performance,
although it is not perceivable through the available data what is
the cause. The main problems of snapshot interpolation turned
out to be hardware limitations as well, bandwidth bottlenecks,
or implementations flaws.

Differences between LAN and WAN evaluations were
small. Both network options are viable for either method.

Compared to results of related work from chapter II, vertical
limitations of deterministic lockstep exceed the 1500 entities
limit of [13] with 16,000 entities, which presumably is mostly
due to hardware advancements, since the paper is over 20 years

old. Furthermore, that the method is theoretically unlimited by
bandwidth [14] can be confirmed.

Horizontal limitations were found to be higher than 4 to 8
players supporting 40 players, but only with 1024 entities in
total, 20 players with up to 8192 entities and 10 players also
achieved acceptable results with 16,000 entities. Resynchro-
nization was limited to a maximum of 8 players, though. The
theoretical limit of 3227 players proposed by [14] could not
be evaluated due to missing computers.

Vertical and horizontal snapshot interpolation limitation
numbers of related work could not be reached due to imple-
mentation flaws and missing optimization.

VI. CONCLUSION

Multiplayer games can increase player enjoyment through
social interactions, cooperation and competition. They present
developers with the challenge of game state synchronization.
This work evaluated deterministic lockstep and snapshot in-
terpolation, identifying their vertical (entity count) and hori-
zontal (player count) scaling limitations and comparing them.
Lockstep was found to have no indicated vertical scaling
limitation with a player count of up to 10 supporting 16,000 or
more entities. Horizontally, 40 or more players were possible
while handling 1024 entities. However, a negative correlation
between entity and player count limitations was observed,
suggesting hardware or implementation flaws as potential
limiting factors.

Snapshot interpolation demonstrated similar player but
lower entity limits, influenced by hardware limitations, band-
width constraints and implementation flaws. The comparison
of these methods with existing literature revealed new practical
limitations for lockstep.

The evaluation of resynchronization as part of a hybrid
lockstep-snapshot system showed limited success, indicating
the need for further optimization before further tests of such
a system can be conducted.

This work also contributed by providing an overview of
game state synchronization, an architecture model for deter-
ministic lockstep, including a hybrid approach with snap-
shot interpolation for re-synchronization and hot-joins, and
a deconstruction of Unity Transport Package (UTP) network
packets.

Future work could expand the evaluation of this work
with more computers to find certain higher horizontal limi-
tations. Snapshot interpolation should be optimized and re-
evaluated incorporating compression, also leading to the fully
implemented and tested hybrid synchronization model. Finally,
an application of the deterministic lockstep implementation
model into a consumer-ready game will yield valuable further
quantitative and, additionally, qualitative evaluation results.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]
(17]

(18]

(19]

[20]

(21]

REFERENCES

Thorsten Quandt and Sonja Krdger. Multiplayer: The social
aspects of digital gaming. Routledge, 2013.

Helena Cole and Mark D. Griffiths. “Social Interactions
in Massively Multiplayer Online Role-Playing Gamers”. In:
CyberPsychology & Behavior 10.4 (2007), pp. 575-583.
Joshua Glazer and Sanjay Madhav. Multiplayer Game Pro-
gramming: Architecting Networked Games. Addison-Wesley
Professional, 2015.

Blake Bryant and Hossein Saiedian. “An evaluation of
videogame network architecture performance and security”.
In: Computer Networks 192 (2021), pp. 108-128.

Glenn Fiedler. Networking for Physics Programmers. https:
//www . gdcvault. com/play/ 1022195 / Physics - for - Game -
Programmers - Networking. [Online; accessed 16-January-
2024]. 2015.

Glenn Fiedler. Deterministic Lockstep. https://gafferongames.
com / post / deterministic_lockstep/. [Online; accessed 16-
January-2024]. 2014.

Ruoyu Sun. Game Networking Demystified. https://ruoyusun.
com/2019/03/28/game-networking- 1.html. [Online; accessed
16-January-2024]. 2019.

Glenn Fiedler. Snapshot Interpolation. https://gafferongames.
com / post / snapshot_interpolation/. [Online; accessed 16-
January-2024]. 2014.

Glenn Fiedler. State Synchronization. https://gafferongames.
com / post / state_synchronization/. [Online; accessed 16-
January-2024]. 2015.

Kathy A. Mills Bessie G. Stone and Beth Saggers. “Online
multiplayer games for the social interactions of children with
autism spectrum disorder: a resource for inclusive education”.
In: International Journal of Inclusive Education 23.2 (2019),
pp. 209-228.

pwec. Perspectives from the Global Entertainment & Media
Outlook 2023-2027. https://www.pwc.com/gx/en/industries/
entertainment- media/outlook/downloads/PwC- GEMO-2023-
PDF_V07.0_Accessible . pdf. [Online; accessed 24-January-
2024]. 2023.

J. Clement. Most played games on Steam in 2023, by hourly
average number of players. https://www.statista.com/statistics/
656319/steam-most-played- games-average- player-per-hour/.
[Online; accessed 18-January-2024]. 2024.

Paul Bettner and Mark Terrano. “1500 Archers on a 28.8:
Network Programming in Age of Empires and Beyond”. In:
(2001). [Online; accessed 21-January-2024].

Josip Petanjek. “Next Generation of Networked Games”. In:
(2023). [Online; accessed 24-January-2024].

Ahmed Abdelkhalek et al. “Behavior and Performance of In-
teractive Multi-Player Game Servers”. In: Cluster Computing
6 (2003), pp. 355-366.

Nathan Sledon et al. “The Effect of Latency on User Perfor-
mance in Warcraft III”. In: (2003).

Tom Beigbeder et al. “The Effects of Loss and Latency on
User Performance in Unreal Tournament 2003”. In: (2004).
Preetam Ghosh et al. “Improving end-to-end quality-of-
service in online multi-player wireless gaming networks”. In:
Computer Communications 31.11 (2008), pp. 2685-2698.
Forrest Smith. Synchronous RTS Engines and a Tale
of Desyncs. https : / /| www . forrestthewoods . com /
blog/synchronous_rts_engines_and_a_tale_of_desyncs/. [On-
line; accessed 31-January-2024]. 2011.

Yuan Gao. Netcode Concepts. https://meseta.medium.com/
netcode-concepts-part- 1-introduction-ec5763fe458c. [Online;
accessed 26-January-2024]. 2018.

Hampus Liljekvist. Detecting Synchronisation Problems in
Networked Lockstep Games. 2016.

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

David Monniaux. “The pitfalls of verifying floating-point
computations”. In: ACM Transactions on Programming Lan-
guages and Systems 30.3 (2008), pp. 1-41.

Glenn Fiedler. Snapshot Compression. https://gafterongames.
com / post / snapshot_compression/. [Online; accessed 28-
January-2024]. 2015.

Gabriel Gambetta. Fast-Paced Multiplayer. https :// www.
gabrielgambetta.com/client- server- game - architecture . html.
[Online; accessed 27-January-2024].

Unity. About Unity Transport. https ://docs - multiplayer .
unity3d.com/transport/current/about/. [Online; accessed 03-
February-2024]. 2023.

Unity. Namespace Unity.Networking.Transport. https://docs.
unity3d.com/Packages/com.unity.transport @ 2.2/api/Unity.
Networking . Transport. html. [Online; accessed 05-February-
2024].

Unity. Unity. https : // unity . com/. [Online; accessed 04-
February-2024].

Glenn Fiedler. What Every Programmer Needs To Know
About Game Networking. https : / / gafferongames . com /
post/ what_every_programmer_needs_to_know_about_game_
networking/. [Online; accessed 15-February-2024]. 2010.
Wireshark. Wireshark - The world’s most popular network
protocol analyzer. https : // www . wireshark . org/. [Online;
accessed 05-February-2024].

Qualcomm Atheros QCAG61x4A. https ://oemdrivers . com /
network - qualcomm - atheros - qca61x4a - wireless. [Online;
accessed 22-February-2024].

1IEEE 802.11ac-2013. https://standards.ieee.org/ieee/802.11ac/
4473/. [Online; accessed 22-February-2024].

Apple. MacBook Pro (167, 2021) - Technical Specifications.
https://support.apple.com/kb/SP858 ?locale=de_DE. [Online;
accessed 22-February-2024].

Apple. MacBook Pro Wi-Fi specification details. https ://
support.apple.com/en- gb/guide/deployment/dep2ac3e3b51/
web. [Online; accessed 22-February-2024].

IEEE 802.11ax-2021. https://standards.ieee.org/ieee/802.
11ax/7180/. [Online; accessed 22-February-2024].

Vodafone Station [with] Wi-Fi 6. https : // www . vdsl -
tarifvergleich . de/vdsl - hardware/all/ vodafone - station - mit -
wi-fi-6/. [Online; accessed 22-February-2024].

Unity. Relay locations and regions. https://docs.unity.com/
ugs/manual/relay / manual/locations - and - regions. [Online;
accessed 23-February-2024].

Note: some sections of the paper were written with the assistance of a

large language model (LLM). The LLM was input exclusively with
text from the thesis, tasked to summarize this text, and its output
was thoroughly validated, improved and incorporated into existing
sections manually.

