
Master thesis for the degree course Computer Science and Media

Deterministic Lockstep in Networked Games

presented by Paul Mieschke

Matr. number: 42621

Email: mail@pmieschke.com

at Hochschule der Medien Stuttgart

on February 29, 2024

for obtaining the academic degree of

Master of Science

First examiner: Prof. Dr. Stefan Radicke

Second examiner: Dr. Stefanie Schrader

Hochschule der Medien Stuttgart

Germany

Ehrenwörtliche Erklärung

Hiermit versichere ich, Paul Mieschke, ehrenwörtlich, dass ich die vorliegende Mas-

terarbeit mit dem Titel: “Deterministic Lockstep in Networked Games” selbstständig

und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel

benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach an-

deren Werken entnommen wurden, sind in jedem Fall unter Angabe der Quelle ken-

ntlich gemacht. Ebenso sind alle Stellen, die mit Hilfe eines KI-basierten Schreibw-

erkzeugs erstellt oder überarbeitet wurden, kenntlich gemacht. Die Arbeit ist noch

nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden. Ich

habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen

Folgen (§ 23 Abs. 2 Master-SPO (Vollzeit)) einer unrichtigen oder unvollständigen

ehrenwörtlichen Versicherung zur Kenntnis genommen.

Paul Mieschke, February 29, 2024

1 of 102

Abstract

Multiplayer games can increase player enjoyment through social interactions, coop-

eration and competition. The popularity of such games is shown by current market

trends. Especially networked multiplayer games frequently achieve great success,

but confront game developers with additional networking challenges in the already

complex field of game production. The primary challenge is game state synchroniza-

tion across all players. Based on the current research, there are three main methods

for this task – deterministic lockstep, snapshot interpolation and state-sync – with

their own advantages and disadvantages.

This work quantitatively evaluated and discussed the vertical (entity count) and

horizontal (player count) limitations of deterministic lockstep and compared the

method to snapshot interpolation. Results showed, that deterministic lockstep has

no indicated vertical scaling limitation with a player count of up to 10 supporting

16,000 or more entities. A horizontal scaling limitation could not be found either

and lockstep was confirmed to work with 40 or more players while handling 1024

entities. However, both scaling dimensions correlate negatively, which was indicated

by the maximum scaling configurations 30 players and 4096 entities or 20 players

and 8192 entities.

An unoptimized snapshot interpolation implementation achieved a vertical scal-

ing limitation of 4096 entities with 10 players and a horizontal scaling limit of 40

or more players with 1024 entities and therefore was found to have a lower entity

limit compared to deterministic lockstep.

Furthermore, results are compared to related work. Other contributions of this

thesis include an overview of game networks and the three game state synchro-

nization techniques. An architecture model for deterministic lockstep including a

hybrid approach combining it with snapshot interpolation for re-synchronization

and hot-joins. And finally, a network packet deconstruction of the implemented

networking framework Unity Transport Package (UTP).

2 of 102

Abstract in German

Multiplayer-Spiele können die Spielfreude durch soziale Interaktionen, Zusamme-

narbeit und Wettbewerb steigern. Die Beliebtheit solcher Spiele wird durch ak-

tuelle Markttrends gezeigt. Insbesondere vernetzte Mehrspieler-Spiele erreichen

häufig großen Erfolg, stellen die Spieleentwickler jedoch vor zusätzliche Heraus-

forderungen im bereits komplexen Feld der Spieleproduktion. Die primäre Her-

ausforderung besteht darin, den Spielzustand zwischen allen Spielern zu synchro-

nisieren. Basierend auf der aktuellen Forschung gibt es dafür drei Hauptmethoden

– deterministic lockstep, snapshot interpolation und state-sync – mit jeweils unter-

schiedlichen Vor- und Nachteilen.

Diese Arbeit evaluiert und diskutiert quantitativ die vertikalen (Entitätsanzahl)

und horizontalen (Spieleranzahl) Beschränkungen von deterministic lockstep und

vergleicht die Methode mit snapshot interpolation. Die Ergebnisse zeigen, dass de-

terministic lockstep keine vertikale Skalierungsbegrenzung bei einer Spieleranzahl

von bis zu 10 vorweist, während 16.000 oder mehr Entitäten definitiv unterstützt

werden. Eine horizontale Skalierungsbegrenzung konnte ebenfalls nicht festgestellt

werden, und es wurde bestätigt, dass Lockstep mit 40 oder mehr Spielern und 1024

Entitäten funktioniert. Beide Skalierungsdimensionen korrelieren jedoch negativ,

was durch die maximalen Skalierungskonfigurationen von 30 Spielern und 4096 En-

titäten oder 20 Spielern und 8192 Entitäten verdeutlicht wurde.

Eine nicht optimierte snapshot interpolation-Implementierung erreichte eine ver-

tikale Skalierungsbegrenzung von 4096 Entitäten mit 10 Spielern und eine horizon-

tale Skalierungsgrenze von 40 oder mehr Spielern mit 1024 Entitäten. Snapshot

interpolation wurde somit eine geringere Entitätengrenze im Vergleich zu deter-

ministic lockstep nachgewiesen.

Darüber hinaus werden die Ergebnisse mit verwandten Arbeiten verglichen.

Weitere Beiträge dieser Arbeit umfassen einen Überblick über Spielnetzwerke und

die drei Spielzustandssynchronisationstechniken. Ein Architekturmodell für deter-

ministic lockstep, einschließlich eines Hybridansatzes mit snapshot interpolation zur

Resynchronisation und für sogenannte Hot-Joins. Schließlich werden die Netzwerk-

pakete des Networking-Frameworks Unity Transport Package (UTP) analysiert.

3 of 102

Dedication

I would like to dedicate this work to my dear family and especially to my parents

Iris and Lutz. I am very grateful for their heartfelt support during my studies and

life and now I am looking forward to exploring the exciting future of our big family

together.

Acknowledgments

I would also like to mention and thank my supervisors Prof. Dr. Stefan Radicke

and Dr. Stefanie Schrader. Their knowledge and experience helped me along the

way while writing this thesis. And even during holidays they found time to assist

me, which is very much appreciated.

4 of 102

Contents

1 Introduction 7

1.1 Scientific question . 9

1.2 Contributions . 11

1.3 Thesis overview . 11

2 Related work 12

3 Theoretical background 15

3.1 Game networks . 15

3.1.1 Topologies . 16

3.1.2 UDP versus TCP . 19

3.1.3 Challenges . 19

3.2 Game state synchronization . 20

3.2.1 Snapshot interpolation . 20

3.2.2 State-sync . 21

4 Deterministic Lockstep 23

4.1 Method: Lockstep . 23

4.2 Method: Determinism . 25

4.3 Desynchronization . 26

4.4 State synchronization summary . 27

5 Implementation 29

5.1 OSI model integration . 29

5.2 Architecture model . 31

5.2.1 UTP – Layer 5-7 . 32

5.2.2 Network System – Layer 5-8 32

5.2.3 Synchronization Systems – Layer 8 35

5.2.4 Hybrid Systems – Layer 8/9 41

5.3 Additional topics . 42

5 of 102

CONTENTS CONTENTS

6 Evaluation 45

6.1 UTP packet evaluation . 45

6.2 Evaluation setup . 48

6.2.1 Synchronized data . 49

6.2.2 Hardware and environment 49

6.2.3 Metrics . 50

6.2.4 Process . 52

6.3 Discussion of results . 53

6.3.1 Metrics . 53

6.3.2 Resynchronization (dl only) 61

6.3.3 Special network conditions 62

6.3.4 Further investigations . 65

6.4 Conclusion and comparison . 86

7 Conclusion 88

References 90

Acronyms 94

Glossary 96

List of Figures 99

List of Tables 102

List of Algorithms 102

6 of 102

Chapter 1

Introduction

Since the inception of video gaming, multiplayer games have made it possible to

increase player enjoyment through social interactions. “Pong”, one of the first major

game releases, is a local multiplayer game. It is played on one computer with two

controllers. Therefore, both players have to be at the same location in order to play

together. Networked multiplayer games, however, allow players to play with each

other by using multiple computers at different locations.

This introduces networking challenges both for locally networked multiplayer

games in a local area network (LAN) and especially for online multiplayer games

in a wide area network (WAN) like the internet. When playing a local multiplayer

game on one computer the state of the game is guaranteed to be the same for all

players. But for networked multiplayer games, where multiple distributed comput-

ers are involved, game state must be synchronized over networks, which is no trivial

task. In order for a game state to be perfectly in-sync, every game entity must be

synchronized so that the game states of each player do not diverge over time. There-

fore, prior to the development of a networked multiplayer game one must carefully

decide on the synchronization method to be used. Also, since game state infor-

mation is communicated to other computers using network packets, latency, jitter,

packet loss and other problems arise that the method must handle.

Based on the current state of research, there are three main methods for game

state synchronization: deterministic lockstep, snapshot interpolation and state-sync

[1], [2], [3]. With deterministic lockstep each client runs a deterministic game

simulation in lockstep (synchronized timing). Only player inputs are shared between

clients by sending them over the network. Therefore, deterministic lockstep yields

low network traffic, but its requirement that the simulation must be deterministic

complicates implementation [4], [5].

When using snapshot interpolation game state is synchronized by sending snap-

shots. Snapshots contain the complete or partial game state and are interpolated

7 of 102

CHAPTER 1. INTRODUCTION

in order to achieve smooth transitions. This method can therefore lead to high

network traffic, but, on the other hand, is easier to implement [6], [5].

State-sync combines deterministic lockstep and snapshot interpolation. Both

inputs and states (snapshots) are shared. This means that the simulation must not

be perfectly deterministic and there is no need for interpolation between snapshots

since each client also simulates the game. This also means the snapshot interval can

be reduced leading to lower network traffic. However, implementation is complex

because two methods have to be implemented [7], [5].

By applying one of these three synchronization methods most singleplayer video

games can be transformed into a networked multiplayer game. However, based on

the requirements of a game genre the most adequate method must be selected, since

they have different advantages and disadvantages. For example, strategy games

with a high entity count should prefer deterministic lockstep, because snapshots

may get very large in size. On the other hand, deterministic lockstep has a relatively

high input latency and is therefore not well suited for fast-paced action games.

Not only games can benefit from networked synchronization methods. One ex-

ample are simulations where computation must be distributed over several machines

due to hardware limitations. Another example are serious games for educational

purposes in schools and companies or for promoting social interactions [8].

Playing games with friends and other humans can increase player enjoyment by

socializing, cooperating or competing with each other [9], [10]. Hence, it may be

reasonable for game developers to devote additional effort on a multiplayer game

or mode in order to prolong player attention.

The global games market is forecast to grow from a revenue of 201 billion US$ in

2021 to 312 billion US$ in 2027 [11] and is therefore twice as large as the worldwide

theatrical and home/mobile entertainment market with 99.7 billion US$ revenue in

2021 [12]. Especially the multiplayer games sector is popular. This can be observed

in figure 1.1. The figure depicts the ten most played games on Steam in 2023 by

hourly average number of players. Eight out of ten games are primarily multiplayer

games, while the other two offer multiplayer modes as well. However, although

Steam is the largest games distribution platform mainly targeted at the PC market,

figure 1.1 is not representative for the whole gaming market. Nevertheless, figure

1.1 is a clear indication of multiplayer popularity.

In summary, although networked multiplayer games pose new challenges to the al-

ready difficult field of game development, history and current market trends have

proven that they may yield significant benefits for both players and game studios.

There are three main methods for multiplayer synchronization, namely determin-

istic lockstep, snapshot interpolation and state-sync. Based on their advantages or

8 of 102

1.1. SCIENTIFIC QUESTION CHAPTER 1. INTRODUCTION

disadvantages and the requirements of the game, the most suitable method can be

determined.

Figure 1.1: Most played games on Steam in 2023, by hourly average number of
players [13].

1.1 Scientific question

As mentioned in the introduction, developing networked multiplayer games comes

with a new set of problems. Besides network latency, jitter and packet loss, each

synchronization method has limitations. Snapshot interpolation and state-sync are

limited by bandwidth, since they require players to share large game state data over

the network [2]. This means that games with many entities like strategy games,

where players control a high number of units, benefit from the deterministic lockstep

approach of only sending player inputs. However, literature often mentions a limit

of four [3] to eight [14] players for deterministic lockstep.

In this work these two limiting dimensions will be evaluated by scaling a sample

game both vertically and horizontally. The vertical axis (y-axis) represents game

entity count, while the horizontal axis (x-axis) indicates number of players. Figure

1.2 visualizes this approach. s⃗ is a scaling vector and points at a certain scaling

configuration. The goal of this thesis is to find the maximum lengths of s⃗ in both

dimensions: max |s⃗|.
Scaling limitations can be divided into three categories: (a) independent limits,

where the intersection of both limits yields one maximized scaling configuration;

9 of 102

1.1. SCIENTIFIC QUESTION CHAPTER 1. INTRODUCTION

(b) dependent limits with one maximized scaling configuration; (c) dependent lim-

its with two or more limits. In this context independence means, that the vertical

and horizontal limit is not dependent on each other and therefore constant. Theo-

retically, there is a fourth category, where both limits are dependent and parallel.

This would result in zero intersection points and a corridor of no limits. However,

this case is unrealistic and thus omitted.

(a) independent limits with

one max |s⃗|
(b) dependent limits with

one max |s⃗|
(c) dependent limits with

many max |s⃗|

Figure 1.2: Scaling graphs showing the two dimensions entity count (y-axis) and
player number (x-axis), scaling vectors s⃗ (blue/cyan) and both vertical and hori-
zontal limits (red/orange dashed lines).

In conclusion, the scientific question can be formulated as follows:

“What are the limitations in terms of vertical (entity count) and horizontal (player

number) scaling of a networked multiplayer game and how does deterministic lock-

step compare to a snapshot method?”

Snapshot interpolation was chosen for the comparison to deterministic lockstep.

This is because snapshot interpolation is a counter-pole regarding limitations. It

is also conceivable that both methods could be combined in future work, so that

based on the game or network conditions and the found limitations of each method

a dynamic switch between them can be performed. This way the disadvantages

of snapshot interpolation (large game state data for many game entities) could be

negated by the advantages of deterministic lockstep and vice-versa.

Another scenario where switching methods might be reasonable is when a game

has both zoomed-out and zoomed-in phases. And, during the zoomed-in phase a

lower-latency method is required, while the game’s meta-state is still synchronized

by deterministic lockstep.

10 of 102

1.2. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

1.2 Contributions

This thesis comprises the following contributions:

1. an overview of game networks and common game state synchronization meth-

ods

2. a comprehensive explanation of deterministic lockstep

3. an architecture and implementation model for deterministic lockstep including

a hybrid approach with snapshot interpolation for re-synchronization and hot-

joins

4. a deconstruction of Unity Transport Package (UTP) network packets

5. evaluation and discussion of the scientific question “What are the limitations

in terms of vertical (entity count) and horizontal (player number) scaling of

a networked multiplayer game and how does deterministic lockstep compare

to a snapshot method?”

1.3 Thesis overview

In the next chapter “Related work” the current state of research regarding the sci-

entific question of this thesis is investigated. After that, chapter 3 “Theoretical

background” lays the knowledge base for later chapters by providing an overview

of game networks and game state synchronization methods. Chapter 4 “Determin-

istic Lockstep” then explains the main synchronization method of this thesis in

more detail, while chapter 5 “Implementation” proposes an architecture and im-

plementation for deterministic lockstep. In chapter 6 “Evaluation” the answer to

the scientific question is first evaluated and subsequently discussed using the im-

plementation of chapter 5. The last chapter 7 concludes this thesis and topics for

future work are proposed.

11 of 102

Chapter 2

Related work

In this chapter the current state of research regarding the scientific question of

this work is investigated. Vertical and horizontal limitations are examined. Similar

comparisons of synchronizations methods are presented. Additionally, related topics

about qualitative research and quality of service (QoS) are explored, since they can

be a limiting factor as well.

The frequently cited paper “1500 Archers on a 28.8: Network Programming in

Age of Empires and Beyond” [14] states, that the game Age of Empires is capable

of synchronizing 1500 game entities and supports up to eight players using deter-

ministic lockstep. They further mention by using a state-sync approach, where

the 2D position (x, y coordinates), status, action, facing direction and damage of

each unit is synchronized, the game would have been limited to a maximum of 250

moving units. Furthermore, qualitative user research concerning input delays was

performed. 250 milliseconds of latency were not noticed by players, 250 to 500 mil-

liseconds were “playable”, and beyond 500ms delay was noticeable and presumably

had a negative effect on player enjoyment. These insights can be used in order to

determine turn durations, a deterministic lockstep concept explained in chapter 4.

The authors of the paper also found out, that in case dynamic turn durations are

used, changes should be gradual and fast if turn duration must increase, but slow if

the duration should decrease. However, Age of Empires is a real-time strategy game

(RTS), which means due to the genre’s gameplay input lag is not as important as

for other game types.

This genre difference is also shown by the two papers “The Effect of Latency

on User Performance in Warcraft III” [15] and “The Effects of Loss and Latency

on User Performance in Unreal Tournament 2003” [16]. Similar to the Age of

Empires paper, even high latency, while noticeable, has no significant impact on

game outcome in Warcraft III. This is attributed to the strategical over real-time

aspect of strategy games. Also, inputs are carried out over time and there is no

12 of 102

CHAPTER 2. RELATED WORK

immediate output action like shooting in a first-person shooter game (FPS). For

fast-paced games like shooters latency has negligible impact during movement but

degrades user performance when shooting, since high precision and timing is needed

in order to hit desired targets. 75 to 100 milliseconds showed an up to 50% accuracy

and kill rate decrease. 100ms were subjectively noticeable and 200ms “annoying”

to players.

Similar QoS results are shown in table 1 of [17] for RTS and FPS games. Ad-

ditionally, car racing games prefer 100ms or less latency. 100-200ms felt “sluggish”

and input delays of more than 500ms lead to loss of car control.

[2] and [3] both state that the vertical limitations of deterministic lockstep are

not constrained by bandwidth, assumed input data is realistically small. However,

in contrast to [14] a maximum player number of only four is suggested. This is

due to the correlation between player count and the probability of a player lagging

behind. So, if one player has a slower computer or worse network connection all

players have to wait creating lags before each lockstep turn. When using snapshot

interpolation game delays do not result from a player being slower, except it is the

host. But, the vertical limit is constrained by maximum bandwidth, since more

game entities yield more data.

[18] evaluated server performance on the game Quake using a high-performance

computer of 2003. They found there is a horizontal limit of 60-100 players. This was

due to a processor rather than network bandwidth bottleneck. Processor utilization

increased linearly with the number of players. Quake uses the snapshot interpolation

method [1].

The work presented so far already provides a base frame for multiplayer limit

expectations. But, most sources and the games that were analyzed can be partially

considered out-of-date by now. Technology evolves rapidly, which means updated

research is beneficial. The recently released article [19] summarizes current gener-

ation networking standards. It is stated that Fortnite supports 100 players with

40-50 thousand synchronized game entities. Planetside 2 achieves an upper limit of

the current generation through a set of connected servers (shards), where each of

these shards is capable of handling up to 2000 players. However, in order to achieve

these high player counts some fidelity must be sacrificed, e.g. projectiles are not

replicated.

[19] further proposes a theoretical player limit for deterministic lockstep. For

that the following assumptions are made: only player characters are synchronized,

player input data includes movement with six degrees of freedom and 20 abilities

resulting in 32 bits being sent at 30 Hz (960 bits per second), with a 10 gigabits/s

link the server is able to receive 10,416,666 input network packets per second. Based

on these conditions [19] calculates the player limit to be
√
10, 416, 666 = 3227.

13 of 102

CHAPTER 2. RELATED WORK

With respect to the scientific question the state of related work can be summarized

as follows:

• vertical limitations of deterministic lockstep range from 1500 entities to prac-

tically unlimited by bandwidth

• horizontal limitations of deterministic lockstep vary between 4 to 8 and a

theoretical limit of 3227 is proposed

• vertical limitations of snapshot methods range from 250 to 40-50 thousand

entities

• horizontal limitations of snapshot methods vary between 60 to 100, but can

be as high as 2000 in heavily optimized games

• input delay impacts vary between game genres

• delays of up to 500ms are considered “playable” for RTS games

• fast-paced shooter and car racing games prefer delays to be less than 100ms

14 of 102

Chapter 3

Theoretical background

This chapter conveys fundamental knowledge about game networking and game

state synchronization, so that following chapters can investigate more specialized

topics. However, general knowledge in the computer science fields of networking

and games is assumed.

3.1 Game networks

Global networks are a cornerstone of modern technology and society. They achieved

significant advances by connecting the world. Every day, a massive amount of data is

sent over the internet by applications that may involve a large number of distributed

computers, such as online multiplayer games. On the other hand, the internet is

not perfect. Data traveling from one side of the world to the other can take up

to multiple 100 milliseconds. And data may arrive late or not at all. Problems

like these make networking especially challenging for real-time applications, where

speed is an important factor. Many games are in real-time, e.g. RTS, FPS and car

racing games. Hence, game networks must be specialized in order to combine the

synchronous nature of games with the asynchronous nature of networks.

Some terms and definitions should be clarified specifically in a game networking

context, since literature is not always consistent.

Multiplayer games can be categorized into local multiplayer games, played on

one computer (e.g. split-screen games), and networked multiplayer games, played

on multiple computers. For this thesis only networked multiplayer games are rele-

vant. Networked multiplayer games further can be divided into locally networked

multiplayer games, played in a local area network (LAN), and online multiplayer

games, played in a wide area network (WAN) like the internet.

A server runs a headless version of a game (without visual output) handling mul-

tiplayer communication and synchronization. Clients are game instances of players

15 of 102

3.1. GAME NETWORKS CHAPTER 3. BACKGROUND

sending inputs and receiving data from another client, server or host. A host is a

combination of server and client on one computer handling both tasks. Authorita-

tive servers have full ownership of the game state and are the only computers that

can be trusted in a game network.

Network packets contain data packaged together meant to be sent, or trans-

mitted (Tx), over a network. Network packets are then received (Rx) and can also

be distributed or broadcast. Distributing a network packet means that after it has

been received from a client (origin) it is transmitted to all other clients excluding

the origin (Dx). On the other hand, broadcasting transmits the packet to all other

connected clients and servers (Bx). Finally, a network message is serializable data

transmitted between clients, servers and hosts.

Network bandwidth is the maximum data transfer capacity of a connection in

a certain amount of time (usually per second). Round-trip time (RTT) is the time

it takes a network packet from its origin to the destination and back.

3.1.1 Topologies

A network topology determines how computers are connected to each other. One

of the most common topologies is the client-server model illustrated in figure 3.1.

Figure 3.1: Client-server topology.

In this architecture every client is only connected to the authoritative server or

host, who is responsible for distributing information across the network. N is the

number of clients and each of them transmits b bytes per second. c bytes/s are

broadcast by the server. This results in the following bandwidth requirements: the

server must have capacity for N · b incoming and N · c outgoing bytes; clients need

16 of 102

3.1. GAME NETWORKS CHAPTER 3. BACKGROUND

a capacity of b outgoing and c incoming bytes. Therefore, bandwidth requirements

increase linearly with the number of clients. The server must maintain N connec-

tions (O(N)) and clients exactly one (O(1)) with a total of O(2N) connections in

the network [1], [20].

By using a host instead of a dedicated server operation costs are reduced, be-

cause, due to a client being also the server, no additional hardware is required.

Technically, in this case the number of clients increases by one. But, bandwidth

and connection count remain unchanged. However, processor demands rise and it

is beneficial if the most capable computer in the network is hosting the game.

Another topology is the peer-to-peer (P2P) model shown in figure 3.2.

Figure 3.2: Peer-to-peer (P2P) topology.

In P2P networks every client, now called peer, is connected to every other peer

with no central authority. Both the required bandwidth and connection count

increase with the number of peers linearly (O(N − 1)), while the total connection

count in the network is a quadratic function (O(N2)). Every peer needs the same

amount of incoming and outgoing bandwidth.

One advantage of P2P is the reduced latency since information is shared directly

with each other instead of first passing it to a server. P2P is also more failure

resistant. If one peer disconnects the network is still functional, while a failed

server renders the whole network inoperative. On the other side, cheating becomes

more of a problem, since there is no authoritative node responsible for the game

state [1], [14], [20].

17 of 102

3.1. GAME NETWORKS CHAPTER 3. BACKGROUND

More topologies and variations exist [21], but most games use either a client-server

or P2P architecture as a base.

Finally, one problem should be mentioned. When using a P2P or client-host

topology and connections should be established over the internet, firewalls and

network address translation (NAT) of each clients local network become a challenge.

Firewalls can discard unknown incoming packets based on their configuration. The

main reason routers use NAT is to combat IP address scarcity. This is done by

giving each device connected to the router a local IP. Then, only the router itself

uses a scarce public IP. When a device opens up a connection to a device outside of

the local network, the router assigns a public port number to this connection. This

way incoming packets can be routed from the router to the local device. However,

this mechanism hinders P2P connections, since public port numbers are not known

by the peers.

It is possible to overcome firewalls and NAT by port-forwarding, which requires

some technical know-how, or various hole-punching techniques like session traversal

utilities for NAT (STUN), but there is still one particular NAT type (symmetric),

that makes true P2P impossible [1]. For this case, as a fallback with guaranteed

connection establishment, relay servers are used (traversal using relays around NAT

(TURN)). A relay (or proxy) is a publicly available server without misconfigured

firewalls and NAT, that only forwards traffic between clients. So, the operating

costs are lower compared to a dedicated server. A disadvantage is that the premise

of true P2P is not anymore achieved and the topology is similar to a client-server

model (see figure 3.1 where the server is now a relay server). This again increases

latency based on the location of the relay in relation to all clients. Figure 3.3 shows

the case where a relay is used in a client-host topology.

Figure 3.3: Client-host topology using a relay.

18 of 102

3.1. GAME NETWORKS CHAPTER 3. BACKGROUND

3.1.2 UDP versus TCP

When developing a networked game the fourth or “transport” layer of the open

systems interconnection model (OSI) provides two options. The connection-based

transmission control protocol (TCP) comes with built-in packet reliability and se-

quencing as well as router congestion control in order to reduce packet loss. The

user datagram protocol (UDP) does not have these features and treats packets in

a “fire-and-forget” way. However, UDP can be used as a base framework for trans-

mission, that can be expanded with connection/session logic, reliability, sequencing

and tailored to specific applications. This makes UDP more efficient, but at the

expense of development time [1], [2], [22].

For example, TCP is suitable for turn-based games, where network messages

must be reliable and speed is not an important factor. Another example are in-

game chats. But, for real-time games, where speed matters or waiting for already

outdated packets (head-of-line blocking) is obstructive, UDP is the better choice.

Bad network conditions also seem to impact TCP more than UDP according to [3].

An RTT of 250ms and 5% packet loss with TCP rendered the game unplayable,

while UDP had no problems even with 250ms and 25% loss.

Finally, it should be mentioned, that TCP’s congestion control mechanism can

prevent data from being sent for up to half a second. Therefore, it can make sense

to disable the Nagle algorithm. This reduces latency at the cost of an increased

packet count. Also, in case of network congestion routers may prioritize TCP and

drop UDP packets first [1].

3.1.3 Challenges

Networking a game comes with a range of new challenges. One set of challenges

is introduced inherently through network functionality. Latency is the delay of

information exchange due to the time network packets need to reach their destina-

tion (RTT). Realistic values range from a few milliseconds in LAN or high-speed

connections to multiple 100 milliseconds for connections around the world. An

RTT of below 100ms is desired [1]. Jitter is the variation of latency over time and

usually is about half the latency [23]. Packet loss is an undesired event in which

network packets do not reach their destination. Common values are between 1-5%

[22]. Bandwidth limitations must be accounted for by carefully choosing which

data must be transmitted and how the data can be compressed. Today’s band-

width standards are quite high at an worldwide average of 80 MBit/s download

and 35 MBit/s upload [24]. Additionally, these factors vary strongly based on the

network conditions of a client and therefore a networked game should be tested also

in worse-case scenarios [1], [21].

19 of 102

3.2. GAME STATE SYNCHRONIZATION CHAPTER 3. BACKGROUND

Another challenge is inherent through the nature of games: cheating. While usu-

ally not a concern in singleplayer games, cheating in multiplayer games is unfair

for other players and can deteriorate their gaming experience or even cause player

loss. One effective way to combat cheating is by using an authoritative topology,

so that the source of truth is controlled by a server or host [25]. However, in the

latter case the host still would be able to manipulate game state. Locally, cheating

could be prevented by memory obfuscation or regular anti-cheat applications [5],

which is out of scope for this thesis.

Finally, the main challenge for networked multiplayer games is game state

synchronization leading to the next section.

3.2 Game state synchronization

Networked multiplayer games involve multiple players and therefore clients. In

order to play together one definitive representation of the game, a game state,

must be synchronized between all clients over networks. Being in-sync across all

clients is achieved if all game entities, e.g. the player character, units, non-playable

characters (NPCs) or game’s meta information like player gold, share the same

state at a certain point of time across all clients. State can consist of for example

position, rotation, health and action.

Various synchronization methods are known. All of the presented methods in

this work include sharing player commands by transmitting them to the server/host

or all peers depending on the topology. Commands are player inputs that translate

to a game logic relevant event. Inputs are physical player interactions (e.g. clicks,

key presses). How these commands are handled on the receiving side depends on

the synchronization method. In this chapter both snapshot interpolation and state-

sync are explored. The next chapter then provides a comprehensive explanation of

deterministic lockstep, since it is a main topic of this thesis.

3.2.1 Snapshot interpolation

Snapshot interpolation can be used in an authoritative topology, where the server or

host is simulating the definitive game state. Each client only sends their commands

to the server, but no client-side game simulation is performed. In literature they

are also called “dumb terminals”, since clients only display a recent game state and

accept inputs [1]. When receiving commands, the server executes them and the

game state is manipulated. In order to share the game state the server regularly

broadcasts snapshots to every client. A snapshot is the game state at a specific time

and therefore contains complete or partial information on how to replicate game

entities. Clients receive snapshots and can then display the new game state to the

20 of 102

3.2. GAME STATE SYNCHRONIZATION CHAPTER 3. BACKGROUND

player. By interpolating between snapshots smooth transitions can be achieved, so

that game entities do not jump between states. Therefore, an interpolation buffer

with old and new snapshots must be maintained having the negative side effect

of increased delay. Instead of using linear interpolation, which can cause subtle

artifacts, Hermite interpolation yields more realistic results. Hermite interpolation

makes use of an entities linear velocity, which therefore must be added to snapshot

data (more bandwidth). Based on the start and end velocity Hermite interpolation

creates a spline going through the start and end position of an entity [2], [6].

Snapshots are sent multiple times per second, e.g. at 10 Hz, and the more

frequently they are sent the more current and accurate the game is for clients.

However, broadcasting snapshots that often requires a high bandwidth especially

for the server. Therefore, some optimization should be made to compress snapshot

size. One approach is to quantize values like positions, rotations and velocities to an

interval and range detailed enough. This includes some experimentation and careful

thinking of the game’s future demands. Another technique is delta compression.

With this approach only changes of entity states are sent with snapshots, given

that the initial state was set up equally for all clients. A disadvantage of delta

compression is that clients now need to acknowledge received snapshots so that the

server knows based on which snapshot new deltas can be computed [26].

3.2.2 State-sync

State-sync can be used with an authoritative topology as well and is a combination

of both snapshot interpolation and deterministic lockstep (see chapter 4). The

server/host receives client commands, distributes them and regularly broadcasts

snapshots to all clients. Snapshot compression can be used here too. Clients again

send their commands, but, in contrast to snapshot interpolation, they also simulate

the game locally instead of only waiting for the next snapshot. Based on the last

received snapshot and player inputs each client can extrapolate, or predict, future

states [7].

Transmitted commands and snapshots contain a timestamp, so that they can be

applied at the same moment. Due to latency these timestamps are usually already

in the past when receiving data. Reconciliation, or rollback, is used to realign the

game state based on a new received command or snapshot. On the server-side the

simulation is rewind to the time of the command, the command is applied and the

simulation fast-forwarded to the original time again. This also compensates for lag,

e.g. when a player shoots at another character, since the server reconstructs the

state to the moment of the player input [25]. On the client-side, first, the checksum

of the received snapshot is compared with the own checksum at that moment.

21 of 102

3.2. GAME STATE SYNCHRONIZATION CHAPTER 3. BACKGROUND

In case they diverge the client simulation is rewind, the snapshot applied and the

simulation is fast-forwarded again. Based on the accuracy of the state extrapolation

only small game entity jumps are possible, that can be concealed by also applying

interpolation [5], [7].

Lastly, state-sync can make use of a priority accumulator queue. Bandwidth

usage may be reduced by only sending the most important entities with a snapshot.

Therefore, each entity is assigned an importance value, e.g. the player character

has a high value and static objects only have low priority. Each entity is added

to the sorted queue based on their priority value. When sending a snapshot the

queue is iterated until a maximum bandwidth is reached. The remaining entities in

the queue, that have not been updated by the snapshot, increase their priority, for

example by doubling the value. This way important entities are updated frequently,

but not exclusively [7].

22 of 102

Chapter 4

Deterministic Lockstep

In the following chapter a third and the main game state synchronization method

of this thesis is explained. Deterministic lockstep is based on two principles. The

game progresses in lockstep between all clients, which is described in the first

section. And, the game simulation must be deterministic, investigated in the

second section. To conclude the chapter, all three synchronization methods, that

have been covered, are compared.

4.1 Method: Lockstep

With deterministic lockstep every client runs the complete simulation of a game and

only commands are either broadcast to other clients or transmitted to the server

or host, who then distributes commands. Therefore, deterministic lockstep can be

used with a client-server as well as a P2P topology [1], [4].

All clients must be in lockstep with each other. This means that own and

received commands are not executed immediately, but at a certain point of time,

that is equal for every client’s simulation. Because time may be ambiguous in this

context, it is beneficial to define different variants: absolute time, the standard world

time (universal time coordinated (UTC)); application time, since launch; game time,

since the game phase. Hence, more precisely, commands should be executed at the

same game time on every client. This moment may be at different absolute and

application times. Once this premise is achieved all clients are in lockstep and

commands are executed synchronously.

Lockstep makes use of turns. A turn is another discrete time variant and is

increased by one after computation of a previous turn has been completed. Turns

have a set time interval (duration) in which the player may issue commands sched-

uled for a later turn. They subdivide game time and are the mechanism to keep

simulations in lockstep. At the end of each turn every client must have received

23 of 102

4.1. METHOD: LOCKSTEP CHAPTER 4. LOCKSTEP

all commands that are scheduled for the next turn. If that is not the case the

simulation pauses until missing commands arrive.

The simulation consists of all game logic relevant systems and must remain in-

sync across all clients. Therefore, a fixed update interval should be used. On the

other hand, the presentation layer, or view, includes systems like user interface (UI),

gameplay irrelevant animations or particles, that are allowed to be non-deterministic

and therefore out-of-sync. Update intervals can be variable and this layer is not

affected by lockstep pauses. Hence, the presentation layer is bound to game time,

whereas the simulation is dependent on the progression of turns [27].

Turns are further subdivided into ticks. Ticks are fixed interval simulation

updates, or steps. When the tick number of a turn reaches the ticks count per

turn, a turn is at its end. Ticks also have a set interval called fixed delta time, that

is determined by turnDuration
ticksPerTurn . Presentation layer update intervals are called delta

time, which is a variable value based on the hardware demands of the game and

capabilities of the computer.

Due to commands in turn N being scheduled for a later turn N + x, there is an

inherent input to action delay. When the turn duration is 250ms and a command is

scheduled for turn N +2 this would result in a minimum delay of 250ms (command

issued at the end of a turn) and maximum of 500ms (command issued at the start

of a turn). In order to mitigate this effect the presentation layer can be used for

immediate feedback, e.g. with animations, particles or audio, whereas simulation

logic is executed later in lockstep [21].

In case of delayed commands players experience lags. Similarly to state-sync,

predictive rollback can be used to reduce lags. So, instead of waiting for the com-

mands of the next turn, the simulation predicts subsequent game states. When

these predictions turn out to be incorrect upon receiving the commands the state

is rolled back and the simulation fast-forwarded based on the now correct inputs.

This case can lead to entity teleportation [14], [21].

Another lockstep optimization includes dynamic turn durations based on the

worst RTT in the network. This can improve player experience in two ways: when

all players have a low RTT input delays can be reduced; when a player has a bad

RTT the number of lags can be reduced in exchange for increased input delay.

Lockstep of the simulation between all clients is required for the game to stay

deterministic, since differently timed command executions result in diverging game

states. This leads to the next section: determinism.

24 of 102

4.2. METHOD: DETERMINISM CHAPTER 4. LOCKSTEP

4.2 Method: Determinism

In the context of games “determinism means that given the same initial condition

and the same [sequence of] inputs [the] simulation gives exactly the same result”

[4]. This requires all commands to be executed in lockstep from a common initial

game state. Besides that, there are many non-deterministic systems in a game that

can cause desynchronization.

The first and foremost source of non-determinism is random. Fortunately, most

random implementations are pseudo random number generators (PRNGs) that,

given an initial seed, output the same sequence of numbers. If the seed is synchro-

nized before game start every client generates the same set of numbers. Neverthe-

less, there are some precautions to be taken. Some PRNGs yield different sequences

based on the compiler, operating system and hardware used. Execution order of

code can be another pitfall. For example, given the code: [20]

SomeFunction(GetRandom(), GetRandom());

The order of the two GetRandom() calls is not guaranteed to be the same across

compilers. A solution to this uncertainty is achieved by splitting up the instruction:

random1 = GetRandom();

random2 = GetRandom();

SomeFunction(random1, random2);

Data structures like arrays and lists must be ordered in some cases [5]. For

example, when elements are accessed by an index shared over the network. Or,

when iterating over all elements and the logic of each iteration is influenced by

order, e.g. random number generation.

Similarly, game engines can use non-deterministic update loops for entities. So,

the order of execution of each entity’s logic is not guaranteed [5]. An entity man-

agement system is a possible solution to this by storing references to each entity

in an ordered data structure, that is iterated to call each entity’s update logic

deterministically. Such a system is explained in chapter 5.

Furthermore, a central data type to many game and physics engines as well as

frameworks can behave non-deterministically. Floating-point number calculations

possibly lead to small deviations on different compilers, operating systems and hard-

ware, that can aggravate to problematic game state diversions [14]. To circumvent

this risk, integers or fixed-point arithmetic can be utilized [5], [20], [28].

When using game engines, physics engines [4], [5] and other external frameworks,

it is mandatory to make sure that every external system used in the simulation layer

is deterministic by investigating the documentation or experimentation. Special

25 of 102

4.3. DESYNCHRONIZATION CHAPTER 4. LOCKSTEP

care must be taken with static PRNGs, since they can be called by external systems

in an uncontrolled manner and could thus manipulate the random number sequence

of internal systems [29]. The presentation layer, however, is free to use any arbitrary

random, since game logic is not influenced. This is also why the simulation layer

should not be dependent on the presentation layer, but the other way around [5].

4.3 Desynchronization

Desynchronization is an undesired condition, that happens when game states of

two or more clients diverge – they are out-of-sync. This contradicts the goal of

multiplayer game synchronization. A sophisticated deterministic lockstep imple-

mentation, that takes all precautions mentioned previously into account, should not

desynchronize. However, keeping a game strictly deterministic requires a consider-

able amount of knowledge and effort. Therefore, it is important to brief developers

contributing to netcode [14]. Nevertheless, human error is always possible and thus

it is recommended to implement additional systems in order to detect and handle

desynchronization.

Desynchronization can be detected with checksums [14], [20], [27]. A checksum

is a value generated based on data, that is used to determine data integrity. In

the context of multiplayer game synchronization it is usually a number generated

based on a game state. Since numbers are significantly smaller in size than game

states, sharing them over the network frequently is unproblematic. Still, building

checksums might be complex and place a heavy load on the hardware based on the

used algorithm or large game states. Checksum generation must yield the same

number for the same game state. If this condition is fulfilled clients with the same

checksum of their game states are in-sync. But, when their checksums differ they

are out-of-sync and a desynchronization is detected.

In case a desynchronization was detected all clients must be resynchronizied

to prevent further game state divergence and possible completely different player

experiences. This can be done by sharing an agreed-upon definitive game state,

usually a snapshot of the host’s state. Based on this reinitialized state deterministic

lockstep can once again attempt to keep all clients in-sync. This process is similar

to savegame loading or hot-joins.

26 of 102

4.4. STATE SYNCHRONIZATION SUMMARY CHAPTER 4. LOCKSTEP

4.4 State synchronization summary

After covering three game state synchronization methods, they can be summarized

visually in figure 4.1 and by category in table 4.1:

Figure 4.1: Game state synchronization summary. The red arrow means “uses”,
and the blue arrow means “could use, but is not part of a default implementation”.

27 of 102

4.4. STATE SYNCHRONIZATION SUMMARY CHAPTER 4. LOCKSTEP

Category Snapshot inter-

polation

State-sync Deterministic

lockstep

Compatible

topologies

(authoritative)

client-server

(authoritative)

client-server

(authoritative)

client-server and

P2P

Game simulation Server or host

only

Server or host and

clients

All clients

Networked data Commands by

clients and snap-

shots by server or

host

Same as snapshot

interpolation

Commands

(snapshots only

on desync)

Bandwidth usage Relatively high Relatively

medium

Relatively low

Latency Relatively

medium

Relatively low Relatively high

Challenges Bandwidth limi-

tations, snapshot

size optimization

Implementation,

adequate predic-

tions

Determinism,

possibility of

desynchronization

Primary scaling

difficulty

Vertical Vertical Horizontal

Cheating The game state of other players cannot be manipulated,

but concealed information can be extracted (e.g. remove

FOW)

Fairness Host has advan-

tage since data is

there first

Same as snapshot

interpolation

No advantages of

any client due to

lockstep

Hot-join / recon-

nect

Possible Possible Possible with

snapshots

Genre recommen-

dation

Similar to state-

sync, less opti-

mized

Fast-paced games

with a conserva-

tive entity count,

e.g. FPS or racing

games

Games with

many entities and

marginal latency

demands, e.g.

RTS or turn-

based games

Table 4.1: Game state synchronization summary based on categories.

28 of 102

Chapter 5

Implementation

Now that the theoretical foundation has been established, chapter 5 addresses the

practical application of this knowledge. Some generalized models are presented,

that provide a guideline for deterministic lockstep implementations. An example

implementation has been developed based on these models in order to evaluate the

models and especially the scientific question of this work. In the end, evaluation

unrelated limitations of the implementation are discussed.

5.1 OSI model integration

Figure 5.1: OSI model integration. Layer 1-7: OSI layers and their employed
implementations. Layer 8-9: custom layers and implementations developed on top
of the OSI model [30]. * e.g. snapshot system, lockstep system, ...

29 of 102

5.1. OSI MODEL INTEGRATION CHAPTER 5. IMPLEMENTATION

In order to provide a first overview and establish the implementation in the net-

working context, implementation details and custom layers can be added to the OSI

model. This OSI model integration is depicted in figure 5.1. The figure includes all

seven default layers as well as two custom layers above with their employed imple-

mentations to the right. Yellow highlighted cells indicate custom implementation

code. In the following, each layer will be explained from bottom to top.

Layers one to three (physical, data link and network) build the backbone of the

internet and together they allow data to be sent over networks across the world.

Layer one handles transmission of data on the lowest level using signals representing

bits, that are sent over a physical medium (e.g. cable or radio transmission). Layer

two is responsible for sending chunks of data (frames) between computers inside

a network, whereas the third layer converts frames into network packets and can

handle transmission over multiple networks with the internet protocol (IP). Layer

one to three use their respective default implementations for packet transfer.

In layer four (transport) UDP is chosen over TCP. Refer to section 3.1.2 for a

comparison of both protocols. Another reason for UDP originates from the used

low-level networking framework UTP, which builds on top of UDP. UTP resides

in layers five to seven. Together with UTP, the network system handles session or

connection management and network message processing. Additionally, the network

system is part of the first custom layer: netcode.

Layer 8 (netcode) is a bridge between low-level networking and game logic. This

layer abstracts away complex netcode by providing high-level systems with appli-

cation programming interfaces (APIs), that can be used by the game logic. The

network system implementation, for example, has methods for connection estab-

lishment and other session management functions. Building on top of that, one

synchronization system must be used, that keeps game states in-sync. Synchro-

nization system APIs should provide a method to transmit commands. A snapshot

and deterministic lockstep synchronization system have been implemented for the

evaluation, but, in general, implementations of the OSI layer integration model can

be exchanged.

Layer nine contains game logic and is the last and topmost layer, that relies on

all below layers. Here, gameplay is defined and high-level networking logic of the

netcode layer is integrated. With this general overview of the implementation, the

next section can go into more detail, particularly concerning layers five to nine.

30 of 102

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

5.2 Architecture model

Figure 5.2: Implementation architecture model. The integrated OSI model layers
five to eight and partially nine are shown in more detail from bottom to top. Each
component builds on top of lower components. Yellow highlighted components may
be disabled in production for a performance increase.

The implementation architecture model is illustrated in figure 5.2. It shows more

details about the previously introduced OSI model integration layers five to eight

and partially nine from bottom to top. Each system and component builds on top

of lower ones. Yellow highlighted components may be disabled in production for

31 of 102

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

a performance increase, since they only serve experimental or analytical but no

functional purposes. To explain the figure further, each system and component is

now described from bottom up.

5.2.1 UTP – Layer 5-7

The Unity Transport Package (UTP) is a low-level networking framework support-

ing client-server/host topologies and is developed for the Unity game engine. It

provides convenient platform abstraction, since the game engine also has cross-

platform support. Based on the platform either a UDP, for conventional devices,

or web-socket, for web-based applications, network driver is used. The driver is

responsible for the transport layer handling (layer four). Since, plain UDP does not

support advanced features like TCP, UTP’s feature pipeline can be tailored to a

game’s needs with additional functionality on top of UDP. There are four included

pipeline stages [30].

The fragmentation stage splits data up into smaller chunks and multiple packets,

that are below the maximum transmission unit (MTU) of approximately 1400 bytes.

The reliability stage guarantees successful transmission of data, granted there is a

possible route from origin to destination device. This is done similar to TCP with

packet acknowledgments (acks). In case of packet loss the corresponding packet is

resent until it arrives. Additionally, this pipeline stage sequences packets, so that

the order of packet transmission is equal to the receive order. UTP also offers an

unreliable sequenced stage if only order matters. Lastly, the simulator stage can be

used to simulate certain network conditions like latency, jitter or packet loss and is

practical for experimentation and limit testing, rather than for production [31].

There is also the possibility of custom pipeline stages, e.g. a statistics stage,

that provides various insights after pipeline processing was completed [31]. This

also implies that ordering of stages is important. For example, it makes sense to

put the reliability stage after fragmentation, so that only fragments need to be

resent after packet loss instead of the whole data, that was fragmented [23].

5.2.2 Network System – Layer 5-8

The network system is a custom high-level networking framework providing LAN

and WAN networking functionality to both the synchronization systems as well

as the game logic. At its core are the session management and network message

processing components.

Although UDP is not connection-based, UTP implements protocols on-top for a

connection-based communication. Therefore, the session management is responsible

for connection management and lobbies. Connection management includes creat-

32 of 102

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

ing a listening host, creating a connecting client, connection establishment and

disconnection by communicating with the UTP network driver. Lobby manage-

ment includes hosting a lobby (host), joining a lobby (clients), lobby configuration,

lobby player management and starting the game phase. There are two different

procedures for connection and lobby management based on the targeted network

(LAN or WAN). In a WAN the procedure is using an external service called Unity

Gaming Services (UGS), that provides a UTP-compatible lobby and relay service in

order to allow online multiplayer games over the internet. So, in this case a relayed

client-server/host topology is used. The logic separation of these two procedures is

only required up until the session management component and does not affect the

following systems and components.

The network message processing component handles transmitting and receiving

network messages. Transmitting is action-based and serializes a message before

adding it to the transmit queue of the network driver. Receiving is event-based

and at first only deserializes the network message header. “Serialization is the

process of converting the state of an [entity] into a form that can be persisted or

transported” [32]. In practice, when serializing an entity the resulting bytes can

be saved to a hard-drive (savegames) or sent over networks. Deserialization is

the opposite process, that converts a stream of bytes read from the hard-drive or

received over the network into an entity state.

Only the network message header is deserialized by the network message pro-

cessing. This is because further deserialization and processing is delegated to other

specialized processing components based on the information extracted from the

header, which contains a network message type.

A first specialized processor is the service processing component. Here, service

related network messages are handled (header type byte is SVC). For example,

the following service functionalities are implemented: connect, disconnect, heart-

beat, lobby updates (LAN procedure only), start game, checksum, resync request,

resynced. Sometimes network messages only serve a notification purpose with no

additional data, but, for instance, the checksum message carries a data body con-

taining the checksum value. Other network message processors and an overview of

message types is addressed later in section 5.2.3.

Both the simulator management and statistics provider components are not

recommended for production builds. They serve analytical purposes and provide

crucial insights during development on the network performance of a game. With

the simulator non-optimal conditions can be tested where latency, jitter or packet

loss is high by setting the parameters of the simulator pipeline stage. Various

statistics are collected from the statistics pipeline stage and are further explained

in chapter 6. They can be displayed as graphs in real-time while running a game,

33 of 102

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

or it is possible to write them to a file for in-depth analysis.

The final component of the network system handles NID management. A net-

work ID (NID) is a unique, synchronized ID across all clients and servers. Game

entities and connections, respectively players, all have a NID. There are various

kinds of IDs, which suggests a summary:

• Local IDs are assigned to all objects and handled by the game engine, in

this case Unity. They are not synchronized across clients and therefore same

entities have different local IDs in other game instances.

• Static NIDs are assigned to static entities. These NIDs are fixed by game

data and therefore every client inherently has the same static NIDs, granted

the same build version is used. They are handled by the NID management

component and examples of static entities are fixed buildings, factions and

types in general (e.g. unit types).

• Dynamic NIDs are assigned to dynamic entities. Dynamic entities are spawned

during runtime and therefore their NIDs must be synchronized, so that com-

mands controlling a spawned entity by NID work on all clients. They are

also handled by the NID management component and examples of dynamic

entities are units or bullets.

• Connection NIDs are assigned to network connections and are based on the

transmitted NID in a connect service network message (SVC). Hence, they are

synonymous with client or player IDs. However, in case a client-server topol-

ogy is used player NIDs must be distributed by the server or host. Connec-

tions and therefore connection NIDs are handled by the session management

component.

When using a snapshot synchronization system dynamic NID generation and

synchronization is straightforward. The server/host assigns a new NID if an entity

is created and distributes the NID along with the entity’s state via snapshots.

However, it is a more intricate process for deterministic lockstep:

Client sends a command, that will spawn a new entity =⇒ Host receives the com-

mand and registers a new NID without an entity object association (prevents the

unlikely case of generating duplicate NIDs while the entity is not yet spawned) =⇒
Host appends the NID to the command and adds the command to the ack buffer

for a later execution (ack buffer is explained in section 5.2.3) =⇒ Host broadcasts

the command (command is acked) =⇒ Clients receive the acked command and add

it to their ack buffer =⇒ When the command’s execution turn is reached all clients

spawn the entity and associate it with the NID.

34 of 102

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

5.2.3 Synchronization Systems – Layer 8

Snapshot System

The snapshot system itself is responsible for a regular snapshot distribution on the

server-side. In theory, it should also handle the interpolation of snapshots with

buffers. However, in this implementation no interpolation is performed, since the

focus is on deterministic lockstep.

Snapshot extraction is the process of creating a snapshot at a certain game time

based on all entity states retrieved from the entity manager and other arbitrary

serializable data that can be provided by the game logic (opt-in non-entity data,

e.g. abstract information like player gold or experience). This is only performed on

the server or host and also can be used as a savegame system.

The clients, on the other hand, only receive snapshots. Snapshot application is

then used to deserialize the snapshot and set the player’s game state according to

it – similar to loading a savegame.

Similar to the service processing component, snapshot processing handles snap-

shot network messages (SNP), while the commands processing component manages

command network messages (CMD). Since all primary network message types have

been covered now, they can be summarized:

Figure 5.3: Network message classes structure. Base classes are abstract. Arrows
represent inheritance.

NetworkMessage is an abstract base class and must be extended by imple-

mentations so that they qualify for network transfer. NetworkMessageType is

the header read by the network message processing in order to delegate the mes-

sage to a suitable specialized processor (SVC, SNP, CMD). All messages must be

35 of 102

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

(de)serializeable. The second layer in the inheritance tree of figure 5.3 are other spe-

cialized abstract base classes for implementations. They define the NetworkMessageType

and have itself another type for the different implementations, that are based on

them (e.g. NMServiceType). The data body or fields depend on the implementa-

tion, for example the checksum service message contains a checksum value. If de-

terministic lockstep (DL) is the primary synchronization system a wrapper around

NMCommand is used, that adds a Turn field to define the command’s execution turn.

Lockstep System

The lockstep system has own command and snapshot processing components. Usu-

ally, only the commands processor is required. But, because the presented model

is capable of resynchronization after desyncs and supports joining a game after it

has been started (hot-join), a snapshot processor tailored to the lockstep system is

needed. This makes the system a lockstep-snapshot hybrid.

Command management is more intricate for the lockstep system compared to

the snapshot system. Instead of immediately executing a received command, a syn-

chronized execution is mandatory. Therefore, two command buffers are used. While

the send buffer handles the timed transmission of commands, the ack buffer stores

and executes received commands in the correct turn. In this implementation, the

send buffer immediately transmits the command. So, no buffer would be required.

However, alternative methods could store commands until the end of the turn and

only then send them out, which would require a buffer (original implementation,

that was changed to the current state).

The ack buffer is a ring buffer and illustrated in figure 5.4.

Figure 5.4: Ack ring buffer. N is the turn number and t is the ring index. Illustrated
in red is the rotation direction of the ring (counter-clockwise).

36 of 102

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

The ring buffer contains four segments. In practice, segments are represented

by a list with dynamic length (add and clear functions are required). Each segment

is designated a turn N and collects all received commands scheduled for that turn

by adding it to their list (turn buffers). Since there are only four segments that

can be mapped to four turns at the same time, a ring index t is introduced. t

is equal to the currentTurn mod segmentCount , where segmentCount is 4, and is

used to access segments stored in an array data structure up to 3 turns ahead with

the formula: [t + (turn − currentTurn) mod segmentCount]. The ring is rotated

counter-clockwise after every turn, which is done using the formula: t = t + 1

mod segmentCount . When receiving a command it is added to the segment [t +

(commandTurn− currentTurn) mod segmentCount]. Every segment has a specific

functionality based on a t offset. The segment at [t+ 0] (current turn) executes its

commands at the start of the turn. Segment [t+1] and [t+2] both collect received

commands, that will be executed in the next two turns. The commands issued in

the current turn N are scheduled for turn N + 2, which means that commands

issued by the host immediately go into the segment [t+ 2]. Finally, segment [t+ 3]

clears all collected commands on turn start for its next ring iteration.

At the core of the lockstep system is the time management component. This compo-

nent enforces a timed execution of commands in lockstep. Additionally, it governs

simulation progression with turns and ticks. So, if not all commands have been re-

ceived and the next turn is not ready, the simulation, or tick progression, is paused.

The lockstep timing of network messages is clarified in figure 5.5 in a typical game

flow scenario. For clarity, the turn duration in the figure is 200ms compared to the

used duration of 250ms in the actual implementation.

Figure 5.5 depicts an exemplary network message exchange between three game

clients over time subdivided into turns, where the middle client is also the host.

Client 1 has an RTT of 50ms, client 2 100ms. Host commands are omitted to

declutter the figure, but, in practice, when the host issues a command it is broadcast

to all other clients (acked), while the host immediately keeps the command in his

ack buffer. In case a server is used, no commands are issued. There are three phases:

the pre-lobby phase, e.g. menu navigation before joining a lobby; the lobby phase,

where players are connected and lobby information is exchanged; the game phase,

which is the actual game (game time). Arrows represent network messages and are

categorized by color: cyan, message from client 1; blue, acked message of client 1

from the host; light purple, message from client 2; dark purple, acked message of

client 2 from the host; black, message from the host (not complete). Each message

is either a SVC (service message) or CMD (command message) – SNP (snapshot

messages) are not included in this scenario.

37 of 102

Figure 5.5: Lockstep network message timing.

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

Messages are named in the following scheme:

[origin?: H(ost)|C(lient)1/2][turn?: T(urn)1..N][message function].

A “sent” message is transmitted from a client to the host, whereas “acked” messages

are acknowledged and broadcasted by the host to clients.

The general commands distribution flow is: client sends a CMD to the host

=⇒ host adds the command to his ack buffer and acks the CMD (broadcasts the

acknowledged command to all clients) =⇒ each client receives the acked CMD and

adds the command to their ack buffer. In the following, the figure is explained from

left to right, respectively in the direction of time.

Once the host has created a lobby, the lobby is visible to other players and he

waits for them to join. For WAN the UGS lobby service is used, while for LAN a

custom implementation is needed. Both clients join the lobby with a SVC connect

handshake, which is a connect request sent by a client and acknowledged by the

host. Client 2 needs twice the time for connecting, since his RTT is 100ms compared

to client 1’s 50ms. After a client has successfully connected to the host, heartbeats

and lobby updates are exchanged, e.g. player joined or lobby configuration changed.

When all players are ready, the host initiates the game with another SVC message.

As soon as a client has loaded the game, the lockstep system becomes active

and pauses the simulation until all commands have been received for the next turn

– in this case turn 1. Central to this mechanism are end turn commands. They are

sent at the end of a turn, but only if the next turn is ready, and contain the number

of commands, that have been issued in the current turn. The next turn N + 1 is

ready if:

1. the client received [client count] end turn commands scheduled for N + 1

2. every end turn’s number of commands summed is equal to the number of

received commands contained in the turn buffer for N + 1

With this mechanism clients can only get ahead one turn until they are forced to

wait. This also prevents an ack buffer overflow. Deadlocks, where all clients wait

for end turn commands and do not send them, since the next turn is not ready, are

not possible as long as commands are scheduled for a turn later than the next one.

In order for the game to start, turn 1 must be ready. Therefore, to notify all

other clients, that the game has loaded, an initial end turn CMD scheduled for

turn 1 is sent (number of commands = 1). The end turn CMD is acked by the host

according to the general distribution flow. The simulation is paused by the lockstep

system until all end turn, or “game loaded”, commands have been received.

At a certain absolute time, clients can be at slightly shifted game, turn and tick

times due to network latency. As already mentioned, the turn time can only differ

by one. However, since clients need to wait for slower ones, lockstep timing should

39 of 102

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

balance itself inherently. In order to help the game begin synchronously, the start

of turn 1 can be delayed artificially to account for RTTs. This can be done by

sharing the maximum RTT of the slowest client in the network in the start game

SVC message. Each client can then calculate the initial delay with maxRTT−ownRTT
2

(host has an ownRTT of 0, minimum is 0).

The game phase starts with turn 1 and each client sends another end turn 0 CMD

scheduled for turn 2. From now on, the lockstep system is working as intended.

Real player commands are issued, sent and distributeed based on the general distri-

bution flow. In the end of a turn an end turn command with the number of issued

commands completes the turn. Both initial end turn CMD messages sent in turn 0

are required to synchronize game start and kick-off the lockstep system.

Given commands are scheduled for turn N + 2, a turn duration of 200ms has a

minimum command issue to execution delay of 200ms (issued in the end of a turn),

and a maximum delay of 400ms (issued in the beginning of a turn), while not taking

into account possible simulation pauses.

In turn 3 and 4 the first player issued commands are executed. Also here, the

effect of a delayed CMD, possibly due to jitter, is shown. The lockstep system

handles the delay by first pausing simulation of client 3, only sending the end

turn CMD of client 3 after the delayed CMD has been received and pausing the

simulation of the other clients until client 3 is able to catch up.

The last component of the lockstep system is the synchronization guard. Since sim-

ulation determinism is challenging and game state desynchronization is possible,

this component detects synchronization anomalies and manages the resynchroniza-

tion process. In order to monitor synchronization each client generates a checksum

of his game state every 20 turns, or approximately 5 seconds. The game state check-

sum (hash) algorithm in a real-time game context should be fast and must detect

data permutation, e.g. wrong order in data structures that lead to diverging states.

A reasonable collision safety must be given, whereas security is of low importance.

Algorithm 1 was used and fulfills these criteria:

Algorithm 1: Game state checksum generation

Input: gameState: a serialized game state (byte array)

Output: the checksum hash of the game state (unsigned integer)

checksum = 0 ;

i = 1 ;

for byte in gameState do
checksum = checksum+ byte · i ; i = i+ 1 ;

end

return checksum ;

40 of 102

5.2. ARCHITECTURE MODEL CHAPTER 5. IMPLEMENTATION

The host broadcasts his checksum after generation. When a client receives that

checksum, both values are compared and in case they do not match a resync request

SVC message is sent back to the host. Once the resync request has been received

by the host, the resynchronization process is initiated:

Host clears the ack buffer, sets the turn to N − 1 and max. ticks (end of the last

turn), generates a new random seed and broadcasts a specialized snapshot with

additional data (turn N − 1 and the new random seed) =⇒ Clients receive the

snapshot, apply it to their game state, clear their ack buffer, set their turn to

N − 1 and max. ticks, initialize their random generator with the seed and send a

resynced SVC message back to the host =⇒ Once, the host has received a resync

SVC from every client, he broadcasts end turn CMD messages for each client, that

are scheduled for the next turn, so that the simulation can continue.

During the whole resynchronization process, both own and incoming commands

are ignored by the host. There can be a maximum command loss of two turns, but

usually only commands issued in the current turn are lost. Also, the game will have

a delay/lag based on the time the resynchronization process takes.

5.2.4 Hybrid Systems – Layer 8/9

Hybrid systems are in between layer eight and nine, since they are essential to

networking, but are used by game logic even when the game is not networked. So,

systems in the hybrid layer must work both in singleplayer as well as multiplayer

while providing a unified interface.

This implementation uses a cross-platform deterministic random provider (PRNG),

that is synchronized with seeds over the network in case of multiplayer, but can be

used in singleplayer as well. The seed is set with the start game SVC message or

resync snapshots.

The entity manager handles both static and dynamic game entities and interop-

erates with the NID management component to (de-)register entities and their IDs

in multiplayer. The entity manager also executes the entities update loop. Entities

are ordered by NID and updated in the same order to achieve a deterministic exe-

cution order, which is among others important for a deterministic random. Also, a

part of a snapshot can be retrieved from the manager by iterating and serializing

each entity, that is registered. Likewise, a snapshot can be applied by deserializing

the entity data, which will set the state of existing entities, spawn new entities and

destroy missing entities.

41 of 102

5.3. ADDITIONAL TOPICS CHAPTER 5. IMPLEMENTATION

5.3 Additional topics

Dynamic turn duration

The turn duration can be dynamic and adapted to changing network conditions.

This improves game flow and therefore player experience. Since the host knows the

maximum RTT of the slowest client in the network, a suitable turn duration can

be determined. A turn duration should be selected, that yields no end turn lags

while input to action delay is minimized, e.g. twice the maximum RTT to account

for jitter and occasional packet loss. According to [14], turn duration changes

should be gradual and increase faster than they decrease. A turn duration change

is communicated to clients with a SVC message, that contains the new duration

and a turn N + x, where x >= 2, when the duration becomes active.

Savegames

A savegame is a snapshot, that contains a non-initial game state. They are created

in order to continue the game at a later point. Savegames can be loaded and

distributeed by the host in the lobby phase and are applied on every client at the

beginning of the game phase.

Hot-join / Reconnect

Contrary to some literature [27], [33], with the implementation model of this work

it is possible to support hot-join and reconnecting to a running game, for example,

after a player lost connection. This is possible, because hot-joining is the same

process as resynchronizing game states after a desync has been detected by the

synchronization guard component. The only additional process is the connection

establishment before the snapshot can be exchanged.

Host migration

In a client-host topology the game can not continue if the host lost connection. Host

migration can be used to be able to continue the game without creating a savegame

and then hosting a new lobby with that savegame. However, migrating the host to

another client requires either an external rendezvous server or other precautionary

measures, because the remaining clients are not connected to each other.

A rendezvous server can be contacted by the clients passing, for example, a lobby

ID, so that the server knows which clients are associated. When all clients contacted

the server the most suitable host can be determined based on communicated client

hardware and network capabilities. After a new host was designated the remaining

clients connect to the host and the game can continue.

42 of 102

5.3. ADDITIONAL TOPICS CHAPTER 5. IMPLEMENTATION

An alternative precautionary measure could be, that the connection information

to every client is shared by the host. This way all clients can connect to the new

host immediately. The selection of the host must work deterministically without

communication between the clients, e.g. based on the client NIDs.

Deterministic lockstep and snapshot interpolation hybrid

Based on the presented implementation architecture model (figure 5.2), it is con-

ceivable that both synchronization methods could be combined, so that, based on

the game or network conditions, a dynamic switch between them can be performed.

This way the disadvantages of snapshot interpolation could be negated by the advan-

tages of deterministic lockstep and vice-versa. For example, snapshot interpolation

is used when many players participate in the current game scene, but determin-

istic lockstep for scenes with many game entities or when bandwidth is limited.

Another scenario where switching methods might be reasonable is when a game

has both zoomed-out and zoomed-in phases. And, during the zoomed-in phase a

lower-latency method is required, while the game’s meta-state is still synchronized

by deterministic lockstep.

Switching methods from deterministic lockstep to snapshot interpolation is

straight-forward. The lockstep system is disabled and stops governing simulation

with turns, while the snapshot system is enabled and from now on only snapshots

are distributeed by the host. This is a fluid transition with no delay. Switching

from snapshot interpolation to deterministic lockstep, however, comes with a de-

lay, since, after disabling the synchronization and enabling the lockstep system, the

same resynchronization process of the synchronization guard component is used.

Limitations

There are general and implementation related limitations, that may influence eval-

uation results:

• network data transmission speed (close to speed of light)

• UGS lobby service (max. players 100)

• UGS relay service (max. players 100)

• bandwidth (e.g. 250 Mbit/s)

• router hardware

• client hardware

• NID uniqueness (alphanumeric 28 byte long IDs, 3628 ≈ 1.55 · 1044 IDs)

43 of 102

5.3. ADDITIONAL TOPICS CHAPTER 5. IMPLEMENTATION

• UTP

– send & receive network packet queue length per update schedule (1024)

– reliable pipeline stage window size per connection (max. 32 in-flight

network packets) [A]

– payload size per network packet (max. 44kB) [B]

Due to limitation [A] a custom system was implemented on top of UTP to pack-

age multiple smaller network messages, that are being transmitted in the same up-

date schedule, into one larger network packet. This reduces the number of in-flight

packets and with that the frequency of packets getting requeued for transmission

(delayed). The maximum package size is approximately 32kB.

Limitation [B] is a problem for snapshot transmission and large packaged net-

work messages. Therefore, an additional fragmentation system was built on top of

the existing UTP fragmentation pipeline stage, that supports a network message

payload size of up to approximately 16MB.

44 of 102

Chapter 6

Evaluation

Based on the implementation of chapter 5 the scientific question of this thesis is now

evaluated and discussed. Before that, the underlying UTP networking framework

used by the implementation is briefly analyzed with regards to its network packet

structure. Then, the evaluation setup is described. Results are evaluated and dis-

cussed and finally a conclusion to the scientific question is formulated. Additionally,

the results are compared to related work.

6.1 UTP packet evaluation

To this date, the documentation of UTP does not include detailed information about

the exact data down to the byte level, that is transmitted. Therefore, Wireshark

[34] was used to deconstruct and analyze UTP packets of a localhost loopback

connection. This means, that the packets never leave the computer, because origin

and destination are the same (IP is 127.0.0.1). Since only the packet data is of

interest and not the transmission to another computer, this setup was chosen. The

following observations were made.

Figure 6.1 shows screenshots of the packet analysis tool Wireshark. The first

screenshot displays four captured packets with a timestamp, source/origin and des-

tination IP, protocol, length/packet size, and further information, which in this

case is the UDP source to destination port and payload size (len). Source and des-

tination IP is always 127.0.0.1 for localhost and the protocol is UDP. The length

varies based on the payload size. Two ports can be identified: the client port with

60546 and the host port with 64977. Each packet’s data is inspected in more detail

in the following four screenshots from top to bottom.

45 of 102

6.1. UTP PACKET EVALUATION CHAPTER 6. EVALUATION

Figure 6.1: UTP packet deconstruction: connection process and heartbeats.

The first packet is a client connect network message. The packet data is shown

both in hexadecimal (left) and textual representation (right). However, the tex-

tual interpretation is mostly unintelligible and therefore ignored. The purple high-

lighted bytes can be attributed to lower layers data (frame, packet, datagram). For

instance, both 7f 00 00 01 bytes are hexadecimal for the localhost loopback IP

127.0.0.1. Or, it can be identified, that the UDP port alternates between the

client’s ec 82 (60546) and host’s fd d1 (64977). The blue highlighted bytes con-

tain the UTP and netcode application data (payload). The first three bytes are a

“UTP” header in American Standard Code for Information Interchange (ASCII)

text encoding, followed by the UTP message type byte. 01 in combination with the

“UTP” header prefix is a connection establishment message. Byte five cannot be

clearly identified, but is probably the differentiation between client connection re-

quest and host connection accept. The remaining eight bytes represent a connection

ID of UTP.

The second packet data shows a UDP port switch in purple. Now the host

sends a message to the client, which is the accept answer to the client’s connection

request. Every payload byte is the same, except for byte five, which is now 02

probably meaning “connection accpeted”.

The last two screenshots show a connection heartbeat, that verifies a connection

is still alive. The heartbeat interval can be configured during the UTP setup. First,

the client’s and then the host’s heartbeat are shown. The heartbeat payload only

includes the message type 03 and the connection ID.

46 of 102

6.1. UTP PACKET EVALUATION CHAPTER 6. EVALUATION

Figure 6.2: UTP packet deconstruction: reconnection process.

Figure 6.2 depicts the UTP reconnection process. First, the client sends a dis-

connect message packet, followed by a new connect message. The client also changes

the port in the process from 60546 to 54969. After that, the host again accepts the

connection request and two heartbeats are exchanged. The client disconnect, host

connect and client heartbeat packets are now analyzed.

Similar to a heartbeat message, the disconnect message contains the message

type byte 02 and the old connection ID. The host connect packet now uses a new

connection ID, that is also used in the client’s heartbeat and all following messages.

Figure 6.3: UTP packet deconstruction: sent data.

Figure 6.3 shows data exchange using the reliable pipeline. Additional payload

is now transmitted, hence the len information is larger compared to the previous

packets. After the client has sent its data, the host also acknowledges the packet

to the client due to the reliable pipeline.

Data uses the message type byte 01 without the “UTP” header, which is the

differentiation to the connect message. It is assumed that pipeline related data

follows highlighted in gray (fragmentation, reliability). c0 could indicate the start

47 of 102

6.2. EVALUATION SETUP CHAPTER 6. EVALUATION

of the actual data sent. The actual netcode data is highlighted in dark blue. This

part is under full control of the netcode implementation on top of UTP and therefore

known. 01 is the netcode’s network message type, for example a command (CMD)

and 2a is arbitrary test data, in this case a byte for the number 42. The remaining

three bytes 00 00 00 again are unknown and could be a buffer or mark the end of

data.

The last screenshot of figure 6.3 is the host’s acknowledgment of the client’s

data packet. This only happens if the reliable pipeline is used. The same message

type and connection ID is used, followed by again unknown presumably pipeline

data. One byte that can be identified is highlighted in yellow. While this byte

was 00 in the client’s packet, the host changes this byte to 01. This could be the

acknowledgment byte change by the reliable pipeline.

In summary, there are four found UTP message types: 01 for data, 02 for

disconnection, 03 for heartbeats, and 01 in combination with the “UTP” header

prefix for connection (55 53 50 01).

Figure 6.4: UTP packet deconstruction: reliable pipeline.

The last inspected figure 6.4 clarifies the functionality of the reliable pipeline.

While the client is temporary unconnected, the host sends multiple data packets

until finally the client is connected again, shown by the heartbeat, and acks the

host’s data packet.

One final note about packets in a relay-based WAN scenario. Packets were ana-

lyzed in this scenario as well, but, except for the finding, that packet size generally

increases, deconstruction turned out to be difficult, presumably due to encryption.

6.2 Evaluation setup

As a reminder, the scientific question is “What are the limitations in terms of

vertical (entity count) and horizontal (player number) scaling of a networked multi-

player game and how does deterministic lockstep compare to a snapshot method?”.

In order to quantitatively evaluate this question, the implementation provides a

command to initiate a 20 second evaluation of a certain scaling configuration. To

48 of 102

6.2. EVALUATION SETUP CHAPTER 6. EVALUATION

determine vertical limits this command distributes the desired entity count across

all clients evenly. The command also instructs the statistics provider component of

each client to start writing statistics to a file for later analysis.

To scale horizontally a total of eight computers were available, where each of

them could run five instances of the evaluation build. This results in a maximum

of 40 simulated clients.

For comparison of deterministic lockstep to a snapshot method, snapshot in-

terpolation was selected due to the reasons mentioned in chapter “Introduction”,

section 1.1, and chapter “Implementation”, section 5.3.

6.2.1 Synchronized data

The game state is made up of a set number of entities. An entity has the following

synchronized data: ushort type (2 bytes), NID id (32 byte string), Vector2D position

(two 4 byte floats = 8 bytes), NID playerId (32 bytes), Vector2DInt coordinates

(8 bytes), byte color (1 byte). So, in total one entity uses 83 bytes. A UTP

network packet has a 27 byte overhead. To synchronize one entity the packet would

therefore have 110 bytes. If multiple entities are synchronized in a snapshot they

are packaged together, so that the overhead is only applied once (fragmentation

disregarded). Sending a 1024 entities snapshot results in a packet size of about

85kB, 4096 entities use approximately 340kB, and 16,000 entities require 1.3MB.

6.2.2 Hardware and environment

Inhomogeneous computer hardware was used in order to replicate the diverse cross-

platform environment of the real world as best as possible. Seven of the eight

computers were Windows 10-based (version 22H2) Acer Aspire V Nitro Black Edi-

tion Gaming Notebooks. They are equipped with an Intel Core i7-6700HQ CPU @

2.6 GHz, an NVIDIA GeForce GTX 960M GPU, 16GB RAM, an SSD hard-drive,

a full HD 60 Hz display, and a Qualcomm Atheros QCA61x4A wireless network

adapter, that supports IEEE 802.11ac with a maximum speed of 867 MBit/s [35],

[36].

A macOS-based (version Sonoma 14.0) 2021 16” Apple MacBook Pro was used

as the host and for additional 4 clients. It is equipped with an M1 Max CPU/GPU,

32GB RAM, an SSD hard-drive, a 3456x2234 120 Hz display, and a wireless network

adapter supporting IEEE 802.11ax and 802.11ac with a maximum speed of 866

MBit/s [37], [38], [39], [36].

The computers were placed next to each other and connected to the router

wirelessly. Each computer had a distance of about 5 meters to the router. The

router is a Vodafone Station supporting IEEE 802.11ax and 802.11ac at a maximum

49 of 102

6.2. EVALUATION SETUP CHAPTER 6. EVALUATION

data rate of 1 GBit/s [40]. The internet provider was Vodafone as well with a

Vodafone Cable 250 MBit/s downlink and 40 MBit/s uplink contract.

The evaluation took place in Karlsruhe, Germany on the 17th February 2024

from about 8 to 11 pm. Prior to the evaluation the actual internet speeds were

tested. On the Windows computers an average download speed of 255.5 MBit/s

and upload speed of 47.2 MBit/s were recorded. On Mac a download speed of 253.9

MBit/s and upload speed of 35.4 MBit/s was reached.

The UGS relay server was reported to be “europe-west4”, which should be

located in the Netherlands according to [41].

6.2.3 Metrics

The statistics provider component of each client collects and writes certain metrics

into a comma-separated values (CSV) file every second for 20 seconds, which results

in about 20 samples per evaluation configuration per client. The following metrics

are considered and analyzed later:

Acronym Metric Unit Description

RelTime/Time Relative time Seconds The time a sample was taken

relative to the starting time of

the evaluation configuration.

FpsSmoothed Smoothed FPS FPS/Hz The display refresh rate of the

game with gradual changes

(smoothed).

MaxAvgRtt Maximum

average RTT

Seconds The maximum average RTT.

For clients there is only one

RTT to the host, which is

the maximum; for the host

the highest RTT to a client

is used. Average means the

RTT is averaged over many

measurement, but, because

this metric is collected from

UTP and not documented, it

is not defined how many or

how long the time interval is.

50 of 102

6.2. EVALUATION SETUP CHAPTER 6. EVALUATION

Acronym Metric Unit Description

DeltaPacketsTx ∆Packets

transmitted

Packets The number of network pack-

ets, that have been trans-

mitted since the last sam-

pling.

DeltaPacketsRx ∆Packets

received

Packets The number of network pack-

ets, that have been received

since the last sampling.

DeltaPacketsTxRe ∆Packets

re-transmitted

Packets The number of network pack-

ets, that have been re-

transmitted by the reliable

pipeline since the last sam-

pling.

DeltaPacketsRxRe ∆duplicate

packets received

Packets The number of network pack-

ets, that have been received

again by the reliable pipeline

since the last sampling.

DeltaPacketsLost ∆Packets lost Packets The number of network pack-

ets, that have been lost since

the last sampling.

DeltaBytesTx ∆Bytes

transmitted

Bytes The number of bytes, that

have been transmitted since

the last sampling.

DeltaBytesRx ∆Bytes received Bytes The number of bytes, that

have been received since the

last sampling.

DeltaBandwidth ∆Bandwidth Bytes The number of bytes, that

have been transmitted and

received since the last sam-

pling.

DeltaTicksLagged ∆Ticks lagged Ticks The number of ticks the sim-

ulation could not progress

since the last sampling.

DeltaDesyncs ∆Desyncs Number The number of desynchro-

nizations, that have been de-

tected since the last sam-

pling.

Table 6.1: A tabular summary of the evaluation metrics.

51 of 102

6.2. EVALUATION SETUP CHAPTER 6. EVALUATION

6.2.4 Process

After setting up the evaluation environment, first, the hardware capabilities of

both computer types were tested by determining the maximum entity count and

reasonable instances per computer for a playable game. A playable game should

have at least 30 frames per second (FPS). It turned out, that the Windows machines

running five instances could handle up to 16,000 entities until the average FPS

dropped below 30. On Mac, entity counts of up to 32,000 were possible. This test

was performed without the multiplayer synchronization functionality in order to

only find the CPU processing and GPU rendering based entity and instance count

limits.

For the method evaluation the following parameters were used:

• 8 automated player commands per second per client (more than realistic)

• deterministic lockstep:

– fixed turn duration of 250ms, no dynamic turn durations

– 15 ticks per turn (one tick is 16.666ms or 60 FPS)

– synchronization guard checks every 5 seconds (4 per 20 second evalua-

tion)

• snapshot interpolation:

– 1 second snapshot distribution intervals

The 1 second snapshot distribution interval is not realistic and should be 100ms or

less for a regular game, because the input to action delay would be too high for

clients. However, since the snapshot system is not optimized in this implementation,

e.g. no snapshot compression is performed, a 1 second interval is reasonable. The

DeltaBandwidth metric should be about the same for a large snapshot sent every

second compared to 10 small in size snapshots sent every 100ms based on the

optimizations evaluated in [26].

The following scaling configurations each were evaluated for 20 seconds:

• With deterministic lockstep, snapshot interpolation:

– In a LAN, WAN:

∗ For 10, 20, 40 players:

· Evaluate 1024, 4096, 8192, 16,000 entities.

52 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

Other configurations were performed irregularly, e.g. 8 players or 2048 entities. A

certain configuration is named in the following scheme: [dl|sl]-[lan|wan]-p[player

count]-e[entity count]. dl stands for deterministic lockstep and sl for snapshot

interpolation.

Additionally, the deterministic lockstep resynchronization process, and the ef-

fects of high latency (200ms), jitter (100ms) and packet loss (10%) of incoming and

outgoing packets on both methods were tested. In the naming scheme these tests

can be identified by a -resync, -delay200, -jitter100 or -loss10 suffix.

6.3 Discussion of results

Every metric is evaluated to discuss vertical and horizontal limits in LAN and WAN,

first for deterministic lockstep and then compared to snapshot interpolation. After

that, resyncs (deterministic lockstep only) and special network condition limits are

evaluated. The aggregated limitations are discussed and compared to related work

in the last section of this chapter, section 6.4.

6.3.1 Metrics

For the evaluation of the metrics a scatter plot is used, that should convey a general

overview of limitations (overview graph). Each data point of this plot represents

the average value of the metric over all sampling points of every client (about 20

samples per client). Besides the value shown in text above the point, the data

points are also colored based on the legend to the right (z value). The x-axis shows

the horizontal scaling configurations (players) and the y-axis represents the verti-

cal scaling steps (entities). This figure type also shows possible entity-player limit

correlations, if there are any. Gray data points indicate no data for that scaling

configuration. This can happen in two cases: the configuration was not tested since

more complex (higher entity and/or player counts) configurations were possible

and evaluated; or the configuration was not possible due to a game crash, for exam-

ple, and no data could be recorded. Therefore gray points at outer edges already

show possible limitations. The title of such figures is in the scheme [Avg.|Med.]

[metric]:[dl|sl]-[lan|wan], where Avg. indicates that the average over all

sample points is used, whereas with Med. the median is used.

Some overview graphs for certain metrics might not yield new insights, but

nevertheless are analyzed for completeness. Since these graphs only show general

tendencies, rather than detailed information, some findings are further investigated

in the 6.3.4 “Further investigations” section. For structural reasons this section is

after all metric overview graphs, but to stay in context it might be advantageous

to directly read a further investigation when it is first mentioned in the following

53 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

text (mentions are clickable). A first mention is written as [investigation name],

whereas subsequent mentions are surrounded by parenthesis ([investigation name]).

FPS

(a) lan (b) wan

Figure 6.5: Overview graph: FpsSmoothed:dl

Figure 6.5: In LAN FPS decrease when scaling vertically and horizontally. This

makes sense vertically, since there are more entities to compute and render for

CPU and GPU. Horizontally, however, it is not as clear and therefore investigated

further [FPS1]. Configs p6/8/10-e16000 achieve an average FPS of 60+. Potential

higher limits are investigated in [FPS2]. p30-e16000 still has acceptable FPS,

while p40-e8192+ is not possible anymore [FPS3]. One can see, that entity and

player count limitations correlate: a high entity count is possible with few players,

and a high player count is only possible with few entities (negative correlation, or

dependent limitations). The vertical limit is 16k+, and horizontal limit is 40(+)

(more clients were not available, but it seems to be a limit ([FPS3])).

The figure for WAN shows similar results to LAN. There are slightly less FPS

in general [FPS4]. However, config p30-e16000 is not possible anymore as it was

already barely possible in LAN. WAN is more demanding for the CPU ([FPS4]). On

the other hand, p40-4096 is possible compared to lan with an acceptable average

FPS [FPS5]. But in general, similar limits to lan are found.

Comparison to snapshot interpolation

Figure 6.6: In lan FPS in general are similar to deterministic lockstep (dl) and again

they decrease when scaling vertically and horizontally. But, it seems like snapshot

interpolation (sl) achieves either good performance over 60 FPS or does not work

at all (gray dots). This might be due to technical problems or the necessity of

54 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) lan (b) wan

Figure 6.6: Overview graph: FpsSmoothed:sl

snapshot optimization, because it seemed the transmit queue was full when the

snapshot got too large and it was heavily fragmented by the custom fragmentation

implementation. Thus, a vertical limit of 8192 (less compared to dl) and a horizontal

limit of 40(+) (same) can be identified.

In wan there is an even lower vertical limit of 4096 and the same player limit,

which looks like an independent limitation of max. 4096 entities and 40 players,

regardless of the respective other limitation.

RTT

(a) lan (b) wan

Figure 6.7: Overview graph: MaxAvgRtt:dl

Figure 6.7: In lan there seems to be a tendency of increasing RTTs with entity

and player count (not as clear as with FPS), see [RTT1]. Acceptable RTTs for

every config can be observed. p20/30-e16000 seem to show an approaching limit

[RTT2]. Again, there is no data available for p40-e8192+ ([FPS3])). In summary,

55 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

no limits are displayed, but indicated starting with p30-e16000.

In wan there is the same increasing tendency like in lan ([RTT1])). Reasonably,

a strong RTT increase compared to lan can be seen, since the packets now have

to travel to a relay server and back. Therefore, the RTT is in most configs above

100ms, which is not ideal for fast-paced games. Here, again data for p40-e8192 can

be found, but not for p30-e16000 similar to the FPS evaluation. Similar limits to

lan are recognized.

Comparison to snapshot interpolation

(a) lan (b) wan

Figure 6.8: Overview graph: MaxAvgRtt:sl

Figure 6.8: No new insights for lan can be found (similar to dl). In wan the RTT

seems to be lower compared to dl wan, but this could be a temporary effect.

Packets

(a) lan (b) wan

Figure 6.9: Overview graph: DeltaPacketsTx:dl

56 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

Figure 6.9: In lan the number of packets sent scales well vertically, since it is not

directly dependent on the entity count, but only player commands, which is con-

stant. With increasing players the packet count increases as well due to additional

packets being transmitted from and to new players. However, the number of packets

should scale linearly based on the player count, which is not the case and investi-

gated in [Packets1]. Another investigation is about the seemingly outlying config

p40-e4096 [Packets2]. In conclusion, no new limits are indicated.

When looking at the corresponding wan figure, config p30-e8192 catches atten-

tion with a packet count of -5 [Packets3]. Generally, more packets are sent due

to packet loss being more frequent in wan, which leads to packet re-transmissions

([FPS4])).

(a) lan (b) wan

Figure 6.10: Overview graph: DeltaPacketsLost:dl

Figure 6.10: There is almost no packet loss in lan (only p-30-e4096 has a rounded

packet loss of 0, but based on the color the loss was probably about 0.4). More

frequent packet loss can be observed in wan: up to an average of ten packets

per second with p40-e8192. This fact indicates problems with that particular

config ([FPS5])). The limit at p-40-e4096 is similar to lan. No vertical limits are

indicated.

Figure 6.11: Generally, more packets are being re-transmitted in wan, which comes

down to the already identified higher packet loss, and presumably also a higher

RTT for acks. But, there are some packets re-transmitted in lan as well. Especially

p30-e16000 could indicate a lan limit [Packets4]. In wan p40-e8192 again is

problematic.

Figure 6.12: Compared to dl, sl has a much higher packet transmission count due to

snapshot data being larger than commands data. Also, the packet count increases

not only with players but also with entities using snapshot interpolation, because

the snapshot gets larger with more entities. Again, the packet count does not

57 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) lan (b) wan

Figure 6.11: Overview graph: DeltaPacketsLost:dl

(a) lan (b) wan

Figure 6.12: Overview graph: DeltaPacketsLost:sl

increase with player count, which is counter-intuitive and was already investigated

in ([Packets1])).

In wan p20+-e4096must be investigated, since it has too few packets [Packets5].

Config p30-e4096 will result in many lags for clients, because the host has problems

with the snapshot distribution due to frequent packet re-transmissions ([Packets5])).

p40-e4096 is not possible; the game crashed after a few seconds ([Packets5])). In

summary, new limits can be identified for sl: vertical 4096 (only for 10 players),

horizontal 40 (only for 1024 entities). Furthermore, it seems like snapshot interpo-

lation has problems scaling horizontally, contrary to its theoretical advantage over

deterministic lockstep. However, it is assumed that this comes down to implemen-

tation flaws. The logs during the evaluation revealed, that the reliable pipeline’s

send queue was full due to snapshot size and fragmentation. Generally, snapshots

should not be sent reliably, but rather discarded if old ones are received. A better

58 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

snapshot system implementation should improve this performance.

Bytes

The packets to bytes correlation is investigated in [Bytes1].

(a) lan (b) wan

Figure 6.13: Overview graph: DeltaBandwidth:dl

Figure 6.13: In lan the bandwidth should not increase with the entity count, investi-

gated in [Bytes2]. Bandwidth increases with player count, because more bytes are

transmitted from and to new clients. An especially high bandwidth can be observed

with p-30-e16000 ([Packets4]). Ultimately, no new limits can be identified.

In wan there is a similar bandwidth compared to lan, which is reasonable, since

packet loss is low. p-40-e8192 stands out and was already investigated in ([Pack-

ets2]). Same limits.

Comparison to snapshot interpolation

(a) lan (b) wan

Figure 6.14: Overview graph: DeltaBandwidth:sl

59 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

Figure 6.14: Similar results to the packets evaluation are shown. Again, the band-

width is higher for sl. Again, the bandwidth should scale with entities and players.

But, it does not horizontally, because the DeltaBandwidth metric extracted by the

statistics provider does not include re-transmitted packets [Bytes3]. And, it does

not scale horizontally due to the known average over clients problem, already identi-

fied in ([FPS1]), ([RTT1]), ([Packets1]): first, the high bandwidth of the host raises

the average, and later, the slightly increased bandwidth of the now higher number of

clients keeps the average in a similar range for all configurations, although the band-

width indeed increases with players. This effect would not be visible if the player

count would increase above 40. The outliers lan-p20-e8192 and lan-p35-e4096

can be explained by [Bytes4] and wan-p40-e4096 by ([Packets5]). On average

not a megabyte is sent, but ([Bytes4]) shows, that the host needs a relatively high

uplink bandwidth compared to clients. In conclusion, the bandwidth confirms the

lower limits for sl, that were already found during the packets evaluation.

Lags and desyncs (dl only)

Generally, an average of 60 lagged ticks per second means that the game does

barely progress and is therefore unplayable. There are 15 ticks per 250ms turn,

which results in a tick interval of 16.666ms or 60 Hz. Therefore 60 lagged ticks are

equivalent to 1 second of lag (16.666ms * 60 = 1000ms = 1 second). Because the

sampling rate of the statistics provider is also 1 second, then all ticks since the last

sample were lagged.

(a) lan (b) wan

Figure 6.15: Overview graph: DeltaTicksLagged:dl

Figure 6.15: In lan lagged ticks increase with entity count [Lags1]. There is also

an increasing lag with player count, even though the increase is only subtle with

1024 entities. This comes down to a disadvantage of dl: with a rising number of

clients the probability of worse computer or network conditions and therefore lags

60 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

increases. In summary, this figure provides detailed limits: p6 has no indicated

entity limit; p10 to p30 have every second tick lagged with 16,000 entities, which is

not ideal; almost every third tick is lagged with 8192 entities ([Lags1]); p40 works

with 1024 entities, but 56 lagged ticks per second with 4096 entities renders the

game unplayable. Therefore, new limits for dl are found: while the vertical limit is

still 16,000 entities, the horizontal limit supports 40 players with only 1024 entities

and is hardware related ([Lags1]).

In wan the results are similar, but p30-e8192 and p40-e8192 are unplayable

with about 50 lags per second. Compared to lan, configuration p40-e4096 works

better in wan and is indeed playable [Lags2].

Not one desync was recorded during the whole evaluation, which shows that the

simulation runs deterministically.

In general, after evaluating all metrics, the DeltaTicksLagged and FPS metrics pro-

vide good insights for deterministic lockstep limitations, whereas the DeltaBand-

width and FPS metric as well is valuable for snapshot interpolation limits.

6.3.2 Resynchronization (dl only)

(a) lan (b) wan

Figure 6.16: Overview graph: DeltaTicksLagged:dl-resync

Figure 6.16: [Resync1] dives deeper in order to understand the bad resynchro-

nization performance shown. The more entities the longer the waiting time (lagged

ticks), since more data must be synchronized (larger snapshots). In lan a maximum

of 4096 entities and 8 players is possible and in wan only maximum 1024 entities

and 8 players. This means that resynchronization has a limitation of 1024 to 4096

entities vertically and 8 players horizontally.

61 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

6.3.3 Special network conditions

Only LAN and 10 players are evaluated, since the worse conditions of WAN and

the probability of one lagging client are simulated.

Latency 200ms

Figure 6.17: Overview graph: DeltaTicksLagged:dl-delay200

Figure 6.17: Only barely playable conditions are achieved with 1024 entities, but

56 lagged ticks per second with 4096 entities is unplayable. The investigation

[Latency1] reveals, that latency induced a desynchronization. Since resynchro-

nization is only possible for up to 8 players, the system failed to continue with 4096

entities explaining the high average lag. So, latency has an effect on deterministic

lockstep limitations, reducing them to the resynchronization limits of 1024 to 4096

entities and 8 players. A better resynchronization process would improve this limit.

Comparison to snapshot interpolation

(a) FpsSmoothed (b) DeltaBandwidth

Figure 6.18: Overview graph: sl-delay200

62 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

Figure 6.18: The same limits as without the latency in wan can be observed. La-

tency has no significant impact on snapshot interpolation except for increased input

to action delay for players.

Jitter 100ms

Figure 6.19: Overview graph: DeltaTicksLagged:dl-jitter100

Figure 6.19: Compared to a latency of 200ms, 8192 entities are barely possible

again. Lower entity counts work with every third tick lagging. Still, jitter has a

large impact on dl performance, since it is similar to latency and has a lower value

[Jitter1].

Comparison to snapshot interpolation

Figure 6.20: Overview graph: DeltaBandwidth:sl-jitter100

Figure 6.20: Only one config data point is available. Hence, the limit is 1024 entities.

Jitter has a stronger impact on sl, although it is a similar effect to latency as it is

the variation of latency. This is investigated in [Jitter2].

63 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

Packet loss 10%

Figure 6.21: Overview graph: DeltaTicksLagged:dl-loss10

Figure 6.21: Similar limits as without the packet loss are shown. The indicated lags

are mostly playable, but not with e16000 [Loss1]. Generally, loss has a small impact

on dl performance. Only with 16,000 entities loss induced a desynchronization

rendering the game unplayable.

Comparison to snapshot interpolation

Figure 6.22: Overview graph: DeltaBandwidth:sl-loss10

Figure 6.22: Again, only one data point is available. So, packet loss also has a

negative impact on sl performance.

64 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

6.3.4 Further investigations

For the further investigations and discussion a line plot is used, that enables a more

in-depth analysis of metrics and limitations (detail graph). The various metric

values are shown on the y-axis over time (x-axis). Client and host data is separated,

where host data usually uses a darker tone of the client color to keep an association,

since multiple different metrics can be shown in one graph. Sometimes two different

y-axis are used in case the units of multiple metrics do not match. The title is based

on the configuration naming scheme.

[FPS1] Scaling horizontally decreases FPS (dl-lan)

(a) (b)

Figure 6.23: Detail graph: [FPS1].1

Figure 6.23: Generally, the FPS of Windows (win) clients is stable at 60 FPS,

which is the maximum possible due to 60 Hz monitors and vertical synchronization

(V-Sync). macOS (mac) clients have a higher FPS due to 120 Hz monitors (more

unstable). The host (on mac) has a lower FPS compared to the mac clients on the

same machine, which comes down to the increased processing workload. A small

detail can be observerd: FPS seem to be higher for the host when FPS for clients

are lower, e.g. at second 5. The same computer has to distribute its resources.

Comparing p-10-e1024 to p40-e1024 (same entities for four times the play-

ers), win computers are in both configuations stable at 60 FPS and macs have an

average of about 100 FPS. Therefore, contrary to the indications of the correspond-

ing overview graph, player count has no significant effect on FPS. But, more win

computers are used, which means the average moves towards 60 FPS.

Figure 6.24: When using the median instead of average in the overview graph, the

finding is confirmed, since FPS are stable scaling horizontally at 60 FPS, except for

the limiting config of p30-e16000. The median also reveals that scaling vertically

65 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

Figure 6.24: Overview graph: Median FpsSmoothed:dl-lan

achieves stable FPS as well, but this is due to the fact, that only some win computers

start to drop FPS, while some other wins and especially macs keep the median high.

For this case average is more suited.

(a) (b)

Figure 6.25: Detail graph: [FPS1].3

Figure 6.25: The lower FPS of the host can be explained with a higher workload

and bandwidth, since he has to send more packets. The figure shows, that indeed

the host must send more packets (dark red line, light red line is not important).

The initial spikes are due to synchronizing the entity number across all clients (IDs

are exchanged, entities are spawned). About four times more packets are sent for

four times the player count. In general, the player count is not limited by FPS

(CPU/GPU), at least with up to 40 players, since there is a small impact shown

for the host.

[go back to first mention]

66 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

[FPS2] Potential entity limit for low player counts (dl)

(a) (b)

Figure 6.26: Detail graph: [FPS2].1

Figure 6.26: With 8192 entities one win client starts falling behind, and even

stronger with 16,000 entities (client “c66...”). The FPS drop in the beginning,

which is again due to synchronizing the initial entity number. 16,000 entities is

still possible, but win clients start to fall below 30 FPS and the host drops to 60

FPS. Other mac clients have an average of 80 FPS, which is still very playable. So

in summary, more entities are possible (32,000 on mac, only max. 16,000 on win),

but CPU/GPU limits start to show through FPS at 16,000 entities based on the

hardware.

(a) (b)

Figure 6.27: Detail graph: [FPS2].2

Figure 6.27: In wan and with 8192 entities win clients start to have lower FPS (still

40). 16,000 entities have a significant impact on mac and an even higher impact on

win (mostly below 20 FPS). Also, the initial entity synchronization takes 5 seconds,

67 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

compared to only 2 in lan. This results in slightly lower CPU/GPU limits in wan.

But why does wan degrade performance compared to lan, since the same amount

of data is sent? ([FPS4])) also investigates this question, but the following figure

6.28 gives additional insights.

(a) (b)

Figure 6.28: Detail graph: [FPS2].3

Figure 6.28: Less lags can be observed in wan. The fewer lags lead to more simu-

lation steps and less waiting. This means that in wan the FPS are lower, because

more computation is performed. FPS is therefore influenced by the deterministic

lockstep performance. In summary, more waiting time leads to more FPS, less

waiting time leads to less FPS (positive correlation).

The fact, that there are less lags in wan, is unfortunately not explainable through

the available data. Host and clients have similar lag behavior: if one player waits,

all have to wait.

[go back to first mention]

[FPS3] 40 players entity limit (dl-lan)

Figure 6.29: Detail graph: [FPS3].1

68 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

Figure 6.29 shows, that the limit is not induced by FPS.

(a) (b)

Figure 6.30: Detail graph: [FPS3].2

Figure 6.30: Again, an initial entity synchronization spike can be seen. Thereafter,

smooth gameplay with 1024 entities is possible (few lags). However, with 4096

entities the game is totally unplayable, since there is no game progress. This shows

a clear limit and is an implementation problem, because too much data for the

reliable send queue must be shared in the beginning, which leads to the game never

starting.

[go back to first mention]

[FPS4] FPS are less in WAN (dl)

(a) (b)

Figure 6.31: Detail graph: [FPS4].1

Figure 6.31: Especially the win clients have slightly lower FPS in wan. This should

be due to more re-transmissions and therefore more more workload.

69 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) (b)

Figure 6.32: Detail graph: [FPS4].2

Figure 6.32 confirms this assumption. The host has to re-transmit approximately

500 packets per second, compared to only a few in lan.

[go back to first mention]

[FPS5] Explaining the entity limit increase for 40 players in dl-wan

(a) (b)

Figure 6.33: Detail graph: [FPS5].1

Figure 6.33: LAN is more stable with 4096 entities; so why does wan manage

to handle 8192 entities as well compared to lan? Though, some clients have bad

performance making 8192 entities unplayable.

Figure 6.34: In lan the 4096 entities config is completely lagged, while in wan the

configuration is still playable. With 8192 entities in wan there is also a complete

simulation pause in the end, but still, wan performs better (related to [FPS2]).

[go back to first mention]

70 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) (b)

(c)

Figure 6.34: Detail graph: [FPS5].2

[RTT1] Tendency of increasing RTTs with entity and player count (dl)

No answer was found based on data for the vertical RTT increase.

(a) (b)

Figure 6.35: Detail graph: [RTT1].1

71 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) (b)

Figure 6.36: Detail graph: [RTT1].2

Figure 6.35 and 6.36: Similar to ([FPS1]), win clients generally have a higher RTT

compared to mac. They increase the average RTT, since only five mac clients

are used and win clients are scaled horizontally. But, there is still a tendency in

wan. RTTs are generally higher in wan and mac and win RTTs are approaching

each other. However, RTTs increase nevertheless, which might be due to network

congestion or a temporary effect.

[go back to first mention]

[RTT2] Investigation of dl-lan-p30-e16000

(a) (b)

Figure 6.37: Detail graph: [RTT2].1

Figure 6.37: Similar to ([RTT1]), the increase in RTT for higher entity counts

cannot be explained by data. It is clear, that RTT can be a limiting factor. For

dl the RTT should be smaller than the turn duration. So, e16000 shows a limit

approaching. [go back to first mention]

72 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

[Packets1] Packet count should scale linearly with player count (dl)

(a) (b)

Figure 6.38: Detail graph: [Packets1].1

Figure 6.38: Contrary to the overview graph, the packet tx count increases by a

factor 4 for the host when the player count is scaled by the same factor ([FPS1],

same graphic). But, similar to both ([FPS1]) and ([RTT1]), the increasing client

count lowers the average, because clients send less packets than the one host (about

5 per second). The median, again, will show that.

Figure 6.39: Overview graph: Median DeltaPacketsTx:dl-lan

Figure 6.39: The median also shows that the packets tx decrease in more complex

configs. This could be due to smaller packets being packaged together, since the

game starts to slow down, and packet transmissions are delayed, so that more

packets are in the send queue, that will be packaged.

[go back to first mention]

73 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

[Packets2] Investigation of dl-lan-p40-e4096

Figure 6.40: Detail graph: [Packets2].1

Figure 6.40: The game seems to never really start, since from second 2 on, after

the initial game state has been synchronized, the game is completely lagged. The

initial and further host packets, that were transmitted, increase the average of the

overview graph, but the clients only tx one packet, that could be the heartbeat, but

no commands. It is unknown why the host keeps transmitting that many packets.

[go back to first mention]

[Packets3] Investigation of dl-wan-p30-e8192 -5 PacketsTx

Figure 6.41: Detail graph: [Packets3].1

Figure 6.41: dl-wan-p30-e8192 must be a bad data point at second 18., e.g. an

implementation bug, since -5 packets is not possible. Maybe there was a data type

overflow due to a high packet count while stopping the evaluation.

[go back to first mention]

74 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

[Packets4] Does a high packet re-transmission count indicate a limit?

(dl-lan-p30-e16000)

Figure 6.42: Detail graph: [Packets4].1

Figure 6.42: The host transmits about 1500 packets, while each client receives about

50 packets. This sums up reasonably: 50 packets * 30 clients (only 29 without

the host) = 1500 packets sent by host. Each client transmits about 5 packets

(difficult to see in the figure, but is known), whereas the host receives about 150

packets: 5 packets * 29 clients = 150 packets received by the host. There are few

re-transmissions with 30 players and 4096 entities.

(a) (b)

Figure 6.43: Detail graph: [Packets4].2

Figure 6.43: One finding of this figure is, that re-transmitted and re-received (du-

plicate) packets do not count as regular transmitted and received packets, but are a

separate value, because the host’s transmitted and re-transmitted packets summed

results in the target 1500 packets, that are assumed (see also [Bytes3]).

The ratio between transmitted and re-transmitted packets DeltaPacketsTxRe
DeltaPacketsTx starts

to rise from 0 and approaches 1 with 16,000 entities. When the ratio rises more

75 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

packets are resent, while less new packets can be sent, since the reliable send queue

is full, which delays game synchronization. So yes, a high packet re-transmission

count indicates a limit, since the game cannot progress that fast, due to reliable

send queue congestion.

Figure 6.44: Detail graph: [Packets4].3

Figure 6.44: Game progression problems are indicated by lags as well. Some clients

also lag behind due to hardware limitations (only few lags), and others additionally

have to wait for them.

[go back to first mention]

[Packets5] Investigation of sl-wan-p20+-e4096

Figure 6.45: Detail graph: [Packets5].1

Figure 6.45: sl-wan-p10-e4096 indicates no problems.

Figure 6.46: sl-wan-p20-e4096 shows a rising packets re-transmission count, which

is a problem according to ([Packets4]). The default packet transmission count, on

the other hand, is falling, which explains the lower average packet tx count in the

overview graph.

76 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) (b)

Figure 6.46: Detail graph: [Packets5].2

The sl-wan-p40-e4096 configuration reveals a game crash after 5 seconds on

the host and therefore a new limit. This is why the packets tx count is low in the

overview graph. Also, the packet txre count is higher than the default tx count,

which is again a problem, since snapshots are congested in the reliable send queue

([Packets4]). Ultimately, sl-wan-p40-e4096 is not possible.

[go back to first mention]

[Bytes1] Bytes to packets correlation

(a) (b)

Figure 6.47: Detail graph: [Bytes1].1

Figure 6.47: While the transmitted bytes are relatively constant, a more variable

packet transmission count can be observed for the host. Therefore, packets are

not always of the same size and are fragmented and packaged based on current

conditions. With e4096, both metrics behave similarly. No correlation is found

based on these two graphs, since in dl the bytes and packets don’t scale with entities.

77 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) (b)

Figure 6.48: Detail graph: [Bytes1].2

Figure 6.48: With sl, the host transmits a constant byte amount of 730kB for 1024

entities rising to about 3MB for 4096 entities (730kB * 4 = 3MB). The transmit-

ted packets count also rises from close to 800 to about 3000 (800 packets * 4 =

3200 packets). Therefore, packets and bytes correlate positively. Also, note the sig-

nificant difference between bytes and packets transmitted by the host and clients,

especially in sl. This makes determining averages in overview graphs challenging.

[go back to first mention]

[Bytes2] Bandwidth should not increase with entity count (dl)

(a) (b)

Figure 6.49: Detail graph: [Bytes2].1

Figure 6.49: Generally, the bandwidth indeed is relatively constant. But, the initial

entity synchronization spike increases the average, since more entities are synchro-

nized in the beginning when scaling vertically.

[go back to first mention]

78 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

[Bytes3] Bandwidth does not include re-transmission

(a) (b)

Figure 6.50: Detail graph: [Bytes3].1

Figure 6.50: For 1024 entities, the host bandwidth is about 720kB with mainly

regular transmissions and few re-transmissions. Client bandwidth is about 80kB.

The host’s transmitted bytes amount should match up with the client’s received

bytes number: 80kB * 9 clients = 720kB.

For 4096 entities: the host bandwidth rises to about 3MB, which is approxi-

mately 720kB * 4. Client bandwidth is about 300kB-500kB (should be 80kB * 4

= 320kB). The host’s DeltaBytesTx (= DeltaBandwidth, few bytes received only)

should match up with all client’s bandwidth: 320kB * 9 clients = about 3MB.

However, in this scenario many re-transmission were recorded. Those are ignored

by bandwidth. The implementation adds bytes to the bandwidth only once per

packet, and not for later re-transmissions. The actual bandwidth must be higher.

[go back to first mention]

[Bytes4] Investigation of sl-lan-p20-e8192 and sl-lan-p35-e4096

Figure 6.51: In config sl-lan-p20-e8192 the host crashes after 16 seconds. This

leads to a lower average bandwidth. sl-lan-p35-e4096 illustrates a high uplink

requirement for hosts (up to 8MB). It is usual, that uplink speeds are lower, than

contracted downlink speeds, so a host with adequate uplink speed must be selected.

Another insight is that higher player counts lead to a lower average bandwidth

([Packets1]).

[go back to first mention]

79 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) (b)

Figure 6.51: Detail graph: [Bytes4].1

[Lags1] Increasing lags with entity count

(a) (b)

(c) (d)

Figure 6.52: Detail graph: [Lags1].1

80 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

Figure 6.52: Few lag spikes with 1024 entities are shown. A rising lag tendency with

4096 can be observed. With 8192 entities there is a constant lag of 30 indicated

(every second tick is lagged), which is playable, but not ideal. There seem to be

some slower clients, that must be waited for. With 16,000 entities the game reached

an average of 40 lags per second and is barely playable and limiting. Since entity

count does not correlate with bandwidth when using dl, the observations must be

linked to hardware limitations and some lagging behind clients, that degrade the

performance for all clients – a known disadvantage of deterministic lockstep.

[go back to first mention]

[Lags2] Investigation of dl-wan-p40-e4096

(a) (b)

Figure 6.53: Detail graph: [Lags2].1

Figure 6.53: Indeed, there seems to be no problem. Similar performance to 1024

entities is shown, despite the initial entity synchronization lag spike.

(a) (b)

Figure 6.54: Detail graph: [Lags2].2

81 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

Figure 6.54: WAN performs better than lan, again. Unfortunately, there is no

explanation by data.

[go back to first mention]

[Resync1] Investigation of resyncs

(a) (b)

Figure 6.55: Detail graph: [Resync1].1

Figure 6.55: In lan at second 7 to 8 the resynchronization was performed. With

4096 entities the game could continue progressing after the resync. But with 8192

entities the progression was completely halted. So, 4096 entities and 8 players is

the limitation in lan.

(a) (b)

Figure 6.56: Detail graph: [Resync1].2

Figure 6.56: In wan the resync was performed at second 4 to 5 and the maximum

supported configuration is now even lower at 1024 entities and 8 players. It is not

possible to resynchronize the game state with 10+ player or 1024+ entities in wan,

respectively 4096+ entities in lan.

82 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) (b)

Figure 6.57: Detail graph: [Resync1].3

Figure 6.57: No other desyncs except the intentional one are detected and other

metrics evaluated also do not provide insights for the reason of the bad resynchro-

nization performance. So, an implementation problem is assumed.

[go back to first mention]

[Latency1] Investigation of latency for dl

(a) (b)

Figure 6.58: Detail graph: [Latency1].1

Figure 6.58: 1024 entities is barely playable and 4096 entities are unplayable.

Figure 6.59: The host has double the RTT delay, since the latency/delay simulator

setting is applied to incoming and outgoing packets. Clients have a high delay of

200-400ms as well. Because the turn duration is only 250ms, this means RTTs of

over 250ms result in permanent lags and very slow simulation progression. Dynamic

turn durations could improve this problem. This is valuable information, but not

83 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) (b)

Figure 6.59: Detail graph: [Latency1].2

an explanation for the dl failure with 4096 entities, since RTTs are similar in both

configs.

(a) (b)

Figure 6.60: Detail graph: [Latency1].3

Figure 6.60: In fact, there was an unintentional desync after 10 seconds with the

4096 entities config. As previously mentioned, resyncs are only possible in dl for

up to 8 players and 4096 entities. That is why e4096 with 10 players failed. On a

positive note this shows, that the desync detection works.

[go back to first mention]

[Jitter1] Investigation of jitter for dl

Figure 6.61: Indeed, the RTT is variable with a maximum of about 100ms and an

added local network inherent delay of 20 to 50 milliseconds.

[go back to first mention]

84 of 102

6.3. DISCUSSION OF RESULTS CHAPTER 6. EVALUATION

(a) (b)

Figure 6.61: Detail graph: [Jitter1].1

[Jitter2] Investigation of jitter for sl

Figure 6.62: Detail graph: [Jitter2].1

Figure 6.62: A rising host RTT in the end can be observed, but not explained

though the available data.

[go back to first mention]

[Loss1] Investigation of loss for dl

Figure 6.63: Again, desyncs are introduced though packet loss, similar to latency.

No desync is shown with 8192 entities, which makes this configuration playable

with few lags. However, there are multiple desyncs with 16,000 entities, which is

definitely above the determined resynchronization limit.

[go back to first mention]

85 of 102

6.4. CONCLUSION AND COMPARISON CHAPTER 6. EVALUATION

(a) (b)

Figure 6.63: Detail graph: [Loss1].1

6.4 Conclusion and comparison

After evaluating and discussing the various metrics, configurations and scenarios a

conclusion to the scientific question can be formulated. Deterministic lockstep has

no indicated vertical scaling limitation with a player count of up to 10 supporting

16,000 or more entities. A horizontal scaling limitation could not be found either

under given circumstances and deterministic lockstep is confirmed to work with

40 or more players while handling 1024 entities. However, performance degrades

when scaling both dimensions, which demonstrates dependent limits as a negative

correlation between entity and player scaling. For instance, a scaling configuration

of 40 players and 4096 entities or 30 players and 8192 entities was not possible. The

projected scaling graph therefore can be depicted by figure 6.64 and assigned to

category (c) according to figure 1.2.

Figure 6.64: Projected scaling graph through evaluation: category (c): dependent
limits with many maximum scaling vectors.

The main reason for performance degradation are simulation pauses induced

by lagged ticks, which in turn can be caused by hardware limitations, high RTTs,

86 of 102

6.4. CONCLUSION AND COMPARISON CHAPTER 6. EVALUATION

respectively latency and jitter, or implementation flaws. Regarding hardware lim-

itations, some computers already had low FPS with 8192 entities and 10 players.

This confirms a disadvantage of deterministic lockstep: scaling horizontally also

increases the probability of slower clients, that degrade game experience for all

players.

Unfortunately, the resynchronization functionality as part of the lockstep-snapshot

hybrid system did not achieve desired results. In LAN 4096 entities and in WAN

only 1024 entities could be resynchronized between a maximum of eight players.

This limitation also resulted in latency, jitter and packet loss hindering determin-

istic lockstep scaling, since they introduced desyncs, that can only be handled in

said configurations.

The unoptimized snapshot interpolation implementation achieved a vertical scal-

ing limit of 4096 entities with 10 players and a horizontal scaling limit of 40 or

more players with 1024 entities and therefore has a lower entity limit compared to

deterministic lockstep. Jitter and packet loss have a negative impact on snapshot

interpolation performance, although it is not perceivable through the available data

what is the cause. The main problems of snapshot interpolation turned out to be

hardware limitations as well, bandwidth bottlenecks, or implementations flaws.

The differences between LAN and WAN evaluations were small. Both network

options are therefore viable for either method.

Compared to results of related work from chapter 2, vertical limitations of deter-

ministic lockstep exceed the 1500 entities limit of [14] with 16,000 entities, which

presumably is mostly due to hardware advancements, since the paper is over 20

years old. Furthermore, that the method is theoretically unlimited by bandwidth

[19] can be confirmed.

Horizontal limitations were found to be higher than 4 to 8 players supporting 40

players, but only with 1024 entities in total, 20 players with up to 8192 entities and

10 players also achieved acceptable results with 16,000 entities. Resynchronization

was limited to a maximum of 8 players, though. The theoretical limit of 3227

players proposed by [19] could not be evaluated due to missing computers.

Vertical and horizontal snapshot interpolation limitation numbers of related

work could not be reached due to implementation flaws and missing optimization.

87 of 102

Chapter 7

Conclusion

Multiplayer games can increase player enjoyment through social interactions, coop-

eration and competition. The popularity of such games is shown by current market

trends. Especially networked multiplayer games frequently achieve great success,

but confront game developers with additional networking challenges in the already

complex field of game production. The primary challenge is game state synchroniza-

tion across all players. Based on the current research, there are three main methods

for this task – deterministic lockstep, snapshot interpolation and state-sync – and

each of them has its own advantages and disadvantages.

This work quantitatively evaluated and discussed the vertical (entity count)

and horizontal (player count) limitations of deterministic lockstep and compared

the method to snapshot interpolation in chapter 6. Results showed, that Deter-

ministic lockstep has no indicated vertical scaling limitation with a player count of

up to 10 supporting 16,000 or more entities. A horizontal scaling limitation could

not be found either and deterministic lockstep was confirmed to work with 40 or

more players while handling 1024 entities. However, both scaling dimensions cor-

relate negatively, which was indicated by the maximum scaling configurations 30

players and 4096 entities or 20 players and 8192 entities. The major reasons for

these limitations were attributed to either hardware, high round-trip times (RTTs),

respectively latency and jitter, or implementation flaws.

An unoptimized snapshot interpolation implementation achieved a vertical scal-

ing limitation of 4096 entities with 10 players and a horizontal scaling limit of 40 or

more players with 1024 entities and therefore was found to have a lower entity limit

compared to deterministic lockstep. The main problems of snapshot interpolation

turned out to be hardware limitations, bandwidth bottlenecks, or implementations

flaws and lack of optimization.

Furthermore, the results were compared to related work from chapter 2 and

new practical vertical and horizontal limitations of deterministic lockstep could be

88 of 102

CHAPTER 7. CONCLUSION

determined, whereas proposed theoretical limits could not be reached. Vertical and

horizontal snapshot interpolation limitation numbers of related work could not be

raised due to said implementation flaws and missing optimization.

A resynchronization functionality as part of a lockstep-snapshot hybrid system

did not achieve desired results. In a local area network (LAN) 4096 entities and

in a wide area network (WAN) only 1024 entities could be resynchronized between

at most eight players. Therefore, a hybrid system, that changes the main synchro-

nization method based on game and network conditions is conceivable and would

theoretically work based on the proposed model and evaluation results, but, before

implementing and evaluating such system in its entirety, the snapshot interpolation

implemention would have to be optimized first.

Other contributions of this thesis included an overview of game networks and

the three game state synchronization techniques in chapter 3 and 4. An architecture

and implementation model for deterministic lockstep including a hybrid approach

combining it with snapshot interpolation for re-synchronization and hot-joins in

chapter 5. And finally, a network packet deconstruction of the implemented net-

working framework Unity Transport Package (UTP) covered in chapter 6.

Future work can expand the evaluation of this work with more computers to find

certain higher horizontal limitations. Furthermore, the snapshot interpolation im-

plementation could be improved with snapshot compression and other optimizations

in order to re-evaluate its limits and compare them to deterministic lockstep. This

would also improve the re-synchronization process performance, that was proposed

in chapter 5 as part of a lockstep-snapshot hybrid model. This model could be im-

plemented and evaluated in its entirety, given the snapshot interpolation system can

be improved. Based on the deterministic lockstep implementation additional topics

like hot-joins, host migration and dynamic turn durations could be evaluated and

discussed as well. Finally, an application of the deterministic lockstep implemen-

tation model into a consumer-ready game will yield valuable further quantitative

and, additionally, qualitative evaluation results.

89 of 102

References

[1] Joshua Glazer and Sanjay Madhav. Multiplayer Game Programming: Archi-

tecting Networked Games. Addison-Wesley Professional, 2015.

[2] Blake Bryant and Hossein Saiedian. “An evaluation of videogame network

architecture performance and security”. In: Computer Networks 192 (2021),

pp. 108–128.

[3] Glenn Fiedler.Networking for Physics Programmers. https://www.gdcvault.

com/play/1022195/Physics-for-Game-Programmers-Networking. [Online;

accessed 16-January-2024]. 2015.

[4] Glenn Fiedler. Deterministic Lockstep. https://gafferongames.com/post/

deterministic_lockstep/. [Online; accessed 16-January-2024]. 2014.

[5] Ruoyu Sun. Game Networking Demystified. https://ruoyusun.com/2019/

03/28/game-networking-1.html. [Online; accessed 16-January-2024]. 2019.

[6] Glenn Fiedler. Snapshot Interpolation. https://gafferongames.com/post/

snapshot_interpolation/. [Online; accessed 16-January-2024]. 2014.

[7] Glenn Fiedler. State Synchronization. https://gafferongames.com/post/

state_synchronization/. [Online; accessed 16-January-2024]. 2015.

[8] Kathy A. Mills Bessie G. Stone and Beth Saggers. “Online multiplayer games

for the social interactions of children with autism spectrum disorder: a re-

source for inclusive education”. In: International Journal of Inclusive Educa-

tion 23.2 (2019), pp. 209–228.

[9] Thorsten Quandt and Sonja Kröger. Multiplayer: The social aspects of digital

gaming. Routledge, 2013.

[10] Helena Cole and Mark D. Griffiths. “Social Interactions in Massively Multi-

player Online Role-Playing Gamers”. In: CyberPsychology & Behavior 10.4

(2007), pp. 575–583.

90 of 102

https://www.gdcvault.com/play/1022195/Physics-for-Game-Programmers-Networking
https://www.gdcvault.com/play/1022195/Physics-for-Game-Programmers-Networking
https://gafferongames.com/post/deterministic_lockstep/
https://gafferongames.com/post/deterministic_lockstep/
https://ruoyusun.com/2019/03/28/game-networking-1.html
https://ruoyusun.com/2019/03/28/game-networking-1.html
https://gafferongames.com/post/snapshot_interpolation/
https://gafferongames.com/post/snapshot_interpolation/
https://gafferongames.com/post/state_synchronization/
https://gafferongames.com/post/state_synchronization/

REFERENCES REFERENCES

[11] pwc. Perspectives from the Global Entertainment & Media Outlook 2023–2027.

https : / / www . pwc . com / gx / en / industries / entertainment - media /

outlook/downloads/PwC-GEMO-2023-PDF_V07.0_Accessible.pdf. [Online;

accessed 24-January-2024]. 2023.

[12] Motion Picture Association. Theme Report 2021. https://www.motionpictures.

org/wp-content/uploads/2022/03/MPA-2021-THEME-Report-FINAL.pdf.

[Online; accessed 24-January-2024]. 2022.

[13] J. Clement. Most played games on Steam in 2023, by hourly average number

of players. https://www.statista.com/statistics/656319/steam-most-

played-games-average-player-per-hour/. [Online; accessed 18-January-

2024]. 2024.

[14] Paul Bettner and Mark Terrano. “1500 Archers on a 28.8: Network Pro-

gramming in Age of Empires and Beyond”. In: (2001). [Online; accessed 21-

January-2024].

[15] Nathan Sledon et al. “The Effect of Latency on User Performance in Warcraft

III”. In: (2003).

[16] Tom Beigbeder et al. “The Effects of Loss and Latency on User Performance

in Unreal Tournament 2003”. In: (2004).

[17] Preetam Ghosh et al. “Improving end-to-end quality-of-service in online multi-

player wireless gaming networks”. In: Computer Communications 31.11 (2008),

pp. 2685–2698.

[18] Ahmed Abdelkhalek et al. “Behavior and Performance of Interactive Multi-

Player Game Servers”. In: Cluster Computing 6 (2003), pp. 355–366.

[19] Josip Petanjek. “Next Generation of Networked Games”. In: (2023). [Online;

accessed 24-January-2024].

[20] Hampus Liljekvist. Detecting Synchronisation Problems in Networked Lock-

step Games. 2016.

[21] Yuan Gao. Netcode Concepts. https : / / meseta . medium . com / netcode -

concepts - part - 1 - introduction - ec5763fe458c. [Online; accessed 26-

January-2024]. 2018.

[22] Glenn Fiedler. UDP vs. TCP. https://gafferongames.com/post/udp_vs_

tcp/. [Online; accessed 27-January-2024]. 2008.

[23] Unity. Pipeline use. https://docs-multiplayer.unity3d.com/transport/

current/pipelines/. [Online; accessed 27-January-2024]. 2023.

91 of 102

https://www.pwc.com/gx/en/industries/entertainment-media/outlook/downloads/PwC-GEMO-2023-PDF_V07.0_Accessible.pdf
https://www.pwc.com/gx/en/industries/entertainment-media/outlook/downloads/PwC-GEMO-2023-PDF_V07.0_Accessible.pdf
https://www.motionpictures.org/wp-content/uploads/2022/03/MPA-2021-THEME-Report-FINAL.pdf
https://www.motionpictures.org/wp-content/uploads/2022/03/MPA-2021-THEME-Report-FINAL.pdf
https://www.statista.com/statistics/656319/steam-most-played-games-average-player-per-hour/
https://www.statista.com/statistics/656319/steam-most-played-games-average-player-per-hour/
https://meseta.medium.com/netcode-concepts-part-1-introduction-ec5763fe458c
https://meseta.medium.com/netcode-concepts-part-1-introduction-ec5763fe458c
https://gafferongames.com/post/udp_vs_tcp/
https://gafferongames.com/post/udp_vs_tcp/
https://docs-multiplayer.unity3d.com/transport/current/pipelines/
https://docs-multiplayer.unity3d.com/transport/current/pipelines/

REFERENCES REFERENCES

[24] Petroc Taylor. Average mobile and fixed broadband download and upload speeds

worldwide as of April 2023. https://www.statista.com/statistics/

896779/average-mobile-fixed-broadband-download-upload-speeds/.

[Online; accessed 27-January-2024]. 2023.

[25] Gabriel Gambetta. Fast-Paced Multiplayer. https://www.gabrielgambetta.

com / client - server - game - architecture . html. [Online; accessed 27-

January-2024].

[26] Glenn Fiedler. Snapshot Compression. https://gafferongames.com/post/

snapshot_compression/. [Online; accessed 28-January-2024]. 2015.

[27] Forrest Smith. Synchronous RTS Engines and a Tale of Desyncs. https:

//www.forrestthewoods.com/blog/synchronous_rts_engines_and_a_

tale_of_desyncs/. [Online; accessed 31-January-2024]. 2011.

[28] David Monniaux. “The pitfalls of verifying floating-point computations”. In:

ACM Transactions on Programming Languages and Systems 30.3 (2008),

pp. 1–41.

[29] Edward Rowe. Generating Predictable Random Numbers in Unity. https:

//blog.redbluegames.com/generating-predictable-random-numbers-

in-unity-c97b7c4895ec. [Online; accessed 01-February-2024]. 2020.

[30] Unity. About Unity Transport. https://docs-multiplayer.unity3d.com/

transport/current/about/. [Online; accessed 03-February-2024]. 2023.

[31] Unity. Namespace Unity.Networking.Transport. https://docs.unity3d.

com / Packages / com . unity . transport @ 2 . 2 / api / Unity . Networking .

Transport.html. [Online; accessed 05-February-2024].

[32] Microsoft. Serialization in .NET. https : / / learn . microsoft . com / en -

us/dotnet/standard/serialization/. [Online; accessed 05-February-2024].

[33] Glenn Fiedler. What Every Programmer Needs To Know About Game Net-

working. https://gafferongames.com/post/what_every_programmer_

needs_to_know_about_game_networking/. [Online; accessed 15-February-

2024]. 2010.

[34] Wireshark. Wireshark - The world’s most popular network protocol analyzer.

https://www.wireshark.org/. [Online; accessed 05-February-2024].

[35] Qualcomm Atheros QCA61x4A. https://oemdrivers.com/network-qualcomm-

atheros-qca61x4a-wireless. [Online; accessed 22-February-2024].

[36] IEEE 802.11ac-2013. https://standards.ieee.org/ieee/802.11ac/

4473/. [Online; accessed 22-February-2024].

92 of 102

https://www.statista.com/statistics/896779/average-mobile-fixed-broadband-download-upload-speeds/
https://www.statista.com/statistics/896779/average-mobile-fixed-broadband-download-upload-speeds/
https://www.gabrielgambetta.com/client-server-game-architecture.html
https://www.gabrielgambetta.com/client-server-game-architecture.html
https://gafferongames.com/post/snapshot_compression/
https://gafferongames.com/post/snapshot_compression/
https://www.forrestthewoods.com/blog/synchronous_rts_engines_and_a_tale_of_desyncs/
https://www.forrestthewoods.com/blog/synchronous_rts_engines_and_a_tale_of_desyncs/
https://www.forrestthewoods.com/blog/synchronous_rts_engines_and_a_tale_of_desyncs/
https://blog.redbluegames.com/generating-predictable-random-numbers-in-unity-c97b7c4895ec
https://blog.redbluegames.com/generating-predictable-random-numbers-in-unity-c97b7c4895ec
https://blog.redbluegames.com/generating-predictable-random-numbers-in-unity-c97b7c4895ec
https://docs-multiplayer.unity3d.com/transport/current/about/
https://docs-multiplayer.unity3d.com/transport/current/about/
https://docs.unity3d.com/Packages/com.unity.transport@2.2/api/Unity.Networking.Transport.html
https://docs.unity3d.com/Packages/com.unity.transport@2.2/api/Unity.Networking.Transport.html
https://docs.unity3d.com/Packages/com.unity.transport@2.2/api/Unity.Networking.Transport.html
https://learn.microsoft.com/en-us/dotnet/standard/serialization/
https://learn.microsoft.com/en-us/dotnet/standard/serialization/
https://gafferongames.com/post/what_every_programmer_needs_to_know_about_game_networking/
https://gafferongames.com/post/what_every_programmer_needs_to_know_about_game_networking/
https://www.wireshark.org/
https://oemdrivers.com/network-qualcomm-atheros-qca61x4a-wireless
https://oemdrivers.com/network-qualcomm-atheros-qca61x4a-wireless
https://standards.ieee.org/ieee/802.11ac/4473/
https://standards.ieee.org/ieee/802.11ac/4473/

REFERENCES REFERENCES

[37] Apple.MacBook Pro (16”, 2021) - Technical Specifications. https://support.

apple.com/kb/SP858?locale=de_DE. [Online; accessed 22-February-2024].

[38] Apple. MacBook Pro Wi-Fi specification details. https://support.apple.

com/en-gb/guide/deployment/dep2ac3e3b51/web. [Online; accessed 22-

February-2024].

[39] IEEE 802.11ax-2021. https://standards.ieee.org/ieee/802.11ax/

7180/. [Online; accessed 22-February-2024].

[40] Vodafone Station [with] Wi-Fi 6. https://www.vdsl-tarifvergleich.de/

vdsl-hardware/all/vodafone-station-mit-wi-fi-6/. [Online; accessed

22-February-2024].

[41] Unity. Relay locations and regions. https://docs.unity.com/ugs/manual/

relay/manual/locations- and- regions. [Online; accessed 23-February-

2024].

[42] Unity. Unity. https://unity.com/. [Online; accessed 04-February-2024].

[43] Unity. Overview of services. https://docs.unity.com/ugs/en-us/manual/

overview/manual/unity- gaming- services- home. [Online; accessed 05-

February-2024].

93 of 102

https://support.apple.com/kb/SP858?locale=de_DE
https://support.apple.com/kb/SP858?locale=de_DE
https://support.apple.com/en-gb/guide/deployment/dep2ac3e3b51/web
https://support.apple.com/en-gb/guide/deployment/dep2ac3e3b51/web
https://standards.ieee.org/ieee/802.11ax/7180/
https://standards.ieee.org/ieee/802.11ax/7180/
https://www.vdsl-tarifvergleich.de/vdsl-hardware/all/vodafone-station-mit-wi-fi-6/
https://www.vdsl-tarifvergleich.de/vdsl-hardware/all/vodafone-station-mit-wi-fi-6/
https://docs.unity.com/ugs/manual/relay/manual/locations-and-regions
https://docs.unity.com/ugs/manual/relay/manual/locations-and-regions
https://unity.com/
https://docs.unity.com/ugs/en-us/manual/overview/manual/unity-gaming-services-home
https://docs.unity.com/ugs/en-us/manual/overview/manual/unity-gaming-services-home

Acronyms

LAN local area network. 7, 15, 19, 32, 33, 39, 52–54, 62, 70, 87, 89, 96

WAN wide area network. 7, 15, 32, 33, 39, 48, 52–54, 62, 82, 87, 89, 96

Tx transmit. 16, 96

Rx receive. 16, 96

Dx distribute. 16, 96

Bx broadcast. 16, 97

NID network ID. 34, 41, 43, 97

RTT round-trip time. 16, 19, 24, 37, 39, 40, 42, 50, 55–57, 72, 86, 88, 97

UTP Unity Transport Package. 2, 3, 11, 30, 32, 33, 44–50, 89, 98

QoS quality of service. 12, 13

RTS real-time strategy game. 12–15, 28

FPS first-person shooter game. 13, 15, 28

FPS frames per second. 50, 52, 54, 55, 65–69, 87

P2P peer-to-peer. 17, 18, 23, 28, 99

NAT network address translation. 18

STUN session traversal utilities for NAT. 18

TURN traversal using relays around NAT. 18

OSI open systems interconnection model. 19, 29–31, 99

UDP user datagram protocol. 19, 30, 32, 45, 46, 98

TCP transmission control protocol. 19, 30, 32

94 of 102

Acronyms Acronyms

NPC non-playable character. 20

UTC universal time coordinated. 23

UI user interface. 24

PRNG pseudo random number generator. 25, 26, 41

FOW fog-of-war. 28

IP internet protocol. 30, 45, 46

API application programming interface. 30

MTU maximum transmission unit. 32

UGS Unity Gaming Services. 33, 39, 43, 50, 98

ASCII American Standard Code for Information Interchange. 46

CSV comma-separated values. 50

V-Sync vertical synchronization. 65

95 of 102

Glossary

local multiplayer game A non-networked multiplayer game played on one com-

puter. 7, 15

networked multiplayer game A networked multiplayer game played on multiple

computers. 2, 7–11, 15, 20, 48, 88

locally networked multiplayer game A networked multiplayer game played on

multiple computers in a local area network (LAN). 7, 15

online multiplayer game A networked multiplayer game played on multiple com-

puters in a wide area network (WAN). 7, 15, 33

server A headless version of the game (without visual output) handling multiplayer

communication and synchronization. 13, 15–18, 20, 21, 23, 28, 32–35, 37, 96,

97

client A game instance of a player sending commands and receiving data from

another client, server or host. 7, 8, 15–26, 28, 32–35, 37, 39–43, 45–50, 52,

53, 58–60, 65–70, 87, 96–98

host A combination of server and client on one computer handling both tasks. 13,

16–18, 20, 21, 23, 26, 28, 32–35, 37, 39–43, 45–50, 58, 60, 65–68, 70, 89, 96–98

authoritative Ownership and source of truth for game states. 16, 17, 20, 21, 28

network packet Data packaged together sent over a network. 2, 7, 11, 13, 16, 19,

30, 44, 45, 49, 51, 89, 96–98

transmit Send a network packet to one other client (Tx). 16, 19–21, 23, 30, 33,

34, 36, 39, 44, 45, 47, 51, 55, 57, 59, 94, 97, 98

receive Get a network packet (Rx). 16, 20, 23, 32–37, 39–41, 51, 58, 94, 98

distribute Send a network packet received from a client (origin) to all other clients

excl. the origin (Dx). 16, 21, 23, 34, 40, 42, 43, 94

96 of 102

Glossary Glossary

broadcast Send a network packet to all other clients (Bx). 16, 20, 21, 23, 34, 37,

39, 41, 94, 98

network message Data transmitted between clients and server or host. 16, 19,

30, 32–35, 37, 38, 44, 46, 48, 97, 99

netcode Networking related code. 26, 30

input A physical player interaction (e.g. click, key press). 7–9, 12–14, 20, 21, 24,

97

command A player input that translates to a game logic relevant event. 20, 21,

23–25, 28, 30, 34–37, 39–41, 48, 49, 52, 57, 74, 96, 98

game entity A game object whose state may be synchronized. 7, 9, 10, 12, 13,

20–22, 34, 41, 43, 97

game state A definitive representation of a game. 2, 7, 11, 16, 17, 20, 21, 23–28,

30, 35, 40–42, 49, 82, 88, 89, 96–99, 102

snapshot The game state at a specific time. 7, 8, 10, 11, 14, 20–22, 26, 28, 30,

34–36, 41–44, 48, 49, 52, 55, 57, 58, 61, 77, 89, 97, 98

checksum A value generated based on data, that is used to determine data in-

tegrity. 26, 33, 36, 40, 41

network ID (NID) Network ID (NID), a unique, synchronized ID across all clients

and servers. Game entities and connections, respectively players, all have a

NID. 34

SVC SerViCe, a service related network message. 33–35, 37, 39–42

CMD CoMmanD, a game logic related network message. 35, 37, 39–41, 48

SNP SNaPshot, a network message containing a snapshot. 35, 37

bandwidth Network bandwidth is the maximum data transfer capacity of a con-

nection in a certain amount of time (usually per second). 9, 13, 14, 16, 17,

19, 21, 22, 28, 43, 59, 60, 78, 87, 88

RTT Round-trip time (RTT), time it takes a network packet from its origin to the

destination and back. 16, 19, 24, 97

latency The delay of information exchange due to the time network packets need

to reach their destination (RTT). 7, 9, 12, 13, 17–19, 21, 28, 32, 33, 39, 53,

62, 63, 83, 85, 87, 88, 98

97 of 102

Glossary Glossary

jitter Variation of latency over time. 7, 9, 19, 32, 33, 40, 42, 53, 63, 87, 88

packet loss An undesired event in which network packets do not reach their des-

tination. 7, 9, 19, 32, 33, 42, 53, 64, 85, 87

deterministic lockstep A multiplayer game state synchronization method, where

each client runs a deterministic simulation in lockstep (synchronized timing).

Only commands are transmitted by clients and broadcast by the host. 2, 3,

7–14, 20, 21, 23, 26, 28–30, 34–36, 43, 48, 49, 52–54, 58, 61, 62, 68, 81, 86–89,

98

snapshot interpolation Amultiplayer game state synchronization method, where

only the host runs the simulation, receives commands and broadcasts snap-

shots to all clients. 2, 3, 7–11, 13, 20, 21, 28, 43, 49, 52–54, 56–59, 61–64,

87–89, 98

state-sync A multiplayer game state synchronization method, that combines the

deterministic lockstep with the snapshot interpolation method. 2, 3, 7–9, 12,

20–22, 24, 28, 88

turn Time in which the player may issue commands scheduled for a later turn. 12,

13, 23, 24, 34, 36, 37, 39–43, 52, 60, 72, 83, 89, 98

tick Fixed subdivisions of a turn in which the simulation runs. 24, 37, 39, 41, 52,

60–63, 86

hot-join A feature, where players are able to join an already started multiplayer

game session. 2, 11, 26, 28, 36, 42, 89

Unity A cross-platform game engine [42]. 32, 34, 98

UTP Unity Transport Package (UTP), a low-level user datagram protocol (UDP)

networking framework for the Unity game engine [30]. 11, 30

Unity Gaming Services (UGS) Unity Gaming Services (UGS) “is an end-to-

end platform that is designed to help [developers] build, engage, and grow [a]

game” [43]. 33

98 of 102

List of Figures

1.1 Most played games on Steam in 2023, by hourly average number of

players [13]. 9

1.2 Scaling graphs showing the two dimensions entity count (y-axis) and

player number (x-axis), scaling vectors s⃗ (blue/cyan) and both ver-

tical and horizontal limits (red/orange dashed lines). 10

3.1 Client-server topology. 16

3.2 Peer-to-peer (P2P) topology. 17

3.3 Client-host topology using a relay. 18

4.1 Game state synchronization summary. The red arrow means “uses”,

and the blue arrow means “could use, but is not part of a default

implementation”. 27

5.1 Open systems interconnection model (OSI) model integration. Layer

1-7: OSI layers and their employed implementations. Layer 8-9: cus-

tom layers and implementations developed on top of the OSI model

[30]. * e.g. snapshot system, lockstep system, 29

5.2 Implementation architecture model. The integrated OSI model lay-

ers five to eight and partially nine are shown in more detail from

bottom to top. Each component builds on top of lower components.

Yellow highlighted components may be disabled in production for a

performance increase. 31

5.3 Network message classes structure. Base classes are abstract. Arrows

represent inheritance. 35

5.4 Ack ring buffer. N is the turn number and t is the ring index. Illus-

trated in red is the rotation direction of the ring (counter-clockwise). 36

5.5 Lockstep network message timing. 38

6.1 UTP packet deconstruction: connection process and heartbeats. . . . 46

6.2 UTP packet deconstruction: reconnection process. 47

6.3 UTP packet deconstruction: sent data. 47

99 of 102

LIST OF FIGURES LIST OF FIGURES

6.4 UTP packet deconstruction: reliable pipeline. 48

6.5 Overview graph: FpsSmoothed:dl . 54

6.6 Overview graph: FpsSmoothed:sl . 55

6.7 Overview graph: MaxAvgRtt:dl . 55

6.8 Overview graph: MaxAvgRtt:sl . 56

6.9 Overview graph: DeltaPacketsTx:dl 56

6.10 Overview graph: DeltaPacketsLost:dl 57

6.11 Overview graph: DeltaPacketsLost:dl 58

6.12 Overview graph: DeltaPacketsLost:sl 58

6.13 Overview graph: DeltaBandwidth:dl 59

6.14 Overview graph: DeltaBandwidth:sl 59

6.15 Overview graph: DeltaTicksLagged:dl 60

6.16 Overview graph: DeltaTicksLagged:dl-resync 61

6.17 Overview graph: DeltaTicksLagged:dl-delay200 62

6.18 Overview graph: sl-delay200 . 62

6.19 Overview graph: DeltaTicksLagged:dl-jitter100 63

6.20 Overview graph: DeltaBandwidth:sl-jitter100 63

6.21 Overview graph: DeltaTicksLagged:dl-loss10 64

6.22 Overview graph: DeltaBandwidth:sl-loss10 64

6.23 Detail graph: [FPS1].1 . 65

6.24 Overview graph: Median FpsSmoothed:dl-lan 66

6.25 Detail graph: [FPS1].3 . 66

6.26 Detail graph: [FPS2].1 . 67

6.27 Detail graph: [FPS2].2 . 67

6.28 Detail graph: [FPS2].3 . 68

6.29 Detail graph: [FPS3].1 . 68

6.30 Detail graph: [FPS3].2 . 69

6.31 Detail graph: [FPS4].1 . 69

6.32 Detail graph: [FPS4].2 . 70

6.33 Detail graph: [FPS5].1 . 70

6.34 Detail graph: [FPS5].2 . 71

6.35 Detail graph: [RTT1].1 . 71

6.36 Detail graph: [RTT1].2 . 72

6.37 Detail graph: [RTT2].1 . 72

6.38 Detail graph: [Packets1].1 . 73

6.39 Overview graph: Median DeltaPacketsTx:dl-lan 73

6.40 Detail graph: [Packets2].1 . 74

6.41 Detail graph: [Packets3].1 . 74

6.42 Detail graph: [Packets4].1 . 75

100 of 102

LIST OF FIGURES LIST OF FIGURES

6.43 Detail graph: [Packets4].2 . 75

6.44 Detail graph: [Packets4].3 . 76

6.45 Detail graph: [Packets5].1 . 76

6.46 Detail graph: [Packets5].2 . 77

6.47 Detail graph: [Bytes1].1 . 77

6.48 Detail graph: [Bytes1].2 . 78

6.49 Detail graph: [Bytes2].1 . 78

6.50 Detail graph: [Bytes3].1 . 79

6.51 Detail graph: [Bytes4].1 . 80

6.52 Detail graph: [Lags1].1 . 80

6.53 Detail graph: [Lags2].1 . 81

6.54 Detail graph: [Lags2].2 . 81

6.55 Detail graph: [Resync1].1 . 82

6.56 Detail graph: [Resync1].2 . 82

6.57 Detail graph: [Resync1].3 . 83

6.58 Detail graph: [Latency1].1 . 83

6.59 Detail graph: [Latency1].2 . 84

6.60 Detail graph: [Latency1].3 . 84

6.61 Detail graph: [Jitter1].1 . 85

6.62 Detail graph: [Jitter2].1 . 85

6.63 Detail graph: [Loss1].1 . 86

6.64 Projected scaling graph through evaluation: category (c): dependent

limits with many maximum scaling vectors. 86

101 of 102

List of Tables

4.1 Game state synchronization summary based on categories. 28

6.1 A tabular summary of the evaluation metrics. 51

List of Algorithms

1 Game state checksum generation . 40

102 of 102

	Introduction
	Scientific question
	Contributions
	Thesis overview

	Related work
	Theoretical background
	Game networks
	Topologies
	UDP versus TCP
	Challenges

	Game state synchronization
	Snapshot interpolation
	State-sync

	Deterministic Lockstep
	Method: Lockstep
	Method: Determinism
	Desynchronization
	State synchronization summary

	Implementation
	OSI model integration
	Architecture model
	UTP – Layer 5-7
	Network System – Layer 5-8
	Synchronization Systems – Layer 8
	Hybrid Systems – Layer 8/9

	Additional topics

	Evaluation
	UTP packet evaluation
	Evaluation setup
	Synchronized data
	Hardware and environment
	Metrics
	Process

	Discussion of results
	Metrics
	Resynchronization (dl only)
	Special network conditions
	Further investigations

	Conclusion and comparison

	Conclusion
	References
	Acronyms
	Glossary
	List of Figures
	List of Tables
	List of Algorithms

