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Abstract

Today’s digital cameras use a mosaic of red, green, and blue color filters to capture
images in three color channels on a single sensor plane. This thesis investigates the use of
convolutional neural networks (CNNs) for demosaicing – the process of reconstructing full-
color images from raw mosaic sensor data. While there are existing CNNs for demosaicing
raw images from the well-established regular Bayer color filter array (CFA), this thesis
focuses on how they perform on alternative non-regular sampling patterns that produce
less aliasing artifacts, namely the stochastic Gaussian- and the RandomQuarter sampling
pattern (Backes and Fröhlich, 2020).
A basic UNet (Ronneberger et al., 2015) and the spatially adaptive SANet (T. Zhang et al.,
2022) are implemented in a supervised training pipeline based on the PixelShift200 image
dataset (Qian et al., 2021) to investigate their suitability for the irregular demosaicing
task. The experiments indicate that the basic UNet encounters difficulties in restoring the
missing color values, whereas the spatially adaptive convolutional layers help in processing
the irregularly sampled raw images.
In addition, this thesis enhances SANet effectiveness by employing an alternative residual
branch based on a CFA-normalized Gaussian filter, as well as a tileable modification to
the Gaussian CFA pattern. The modified SANet is shown to outperform the conventional
dFSR algorithm (Backes & Fröhlich, 2020) in terms of peak signal to noise ratio (PSNR)
and structural similarity index measure (SSIM).



Kurzfassung

Moderne Digitalkameras nutzen ein Pixel-Mosaik aus roten, grünen und blauen Farbfiltern
auf dem Kamerasensor (auch Color-Filter-Array, CFA genannt), um Bilddaten in drei
Farbkanälen auf einer einzigen Sensorschicht zu erfassen. In dieser Bachelorarbeit wird
der Einsatz von Convolutional-Neural-Networks (CNNs) für das Demosaicing untersucht,
also für die Rekonstruktion von Vollfarbbildern aus Rohdaten von Kamerasensoren mit
Farbfiltermosaik. Während bereits CNNs für das Demosaicing von regelmäßig gesampleten
Rohbildern des Bayer-Sensors existieren, konzentriert sich diese Arbeit darauf, welche CNNs
sich für alternative, unregelmäßige Abtastmuster eignen, die weniger Aliasing-Artefakte
erzeugen. Konkret werden das stochastische Gauss- und das RandomQuarter-Abtastmuster
(Backes & Fröhlich, 2020) untersucht.
Ein einfaches UNet (Ronneberger et al., 2015) und das räumlich adaptive SANet (T.
Zhang et al., 2022) werden in einer überwachten Trainingspipeline basierend auf dem
PixelShift200-Bilddatensatz (Qian et al., 2021) implementiert, um ihre Eignung für die
Aufgabe des irregulären Demosaicing zu untersuchen. Die Experimente zeigen, dass das
einfache UNet auf Schwierigkeiten bei der Wiederherstellung der fehlenden Farbwerte stößt,
während die räumlich adaptiven (spatially-adaptive) Convolution-Layer die Rekonstruktion
der unregelmäßig abgetasteten Rohbilder verbessern.
Zusätzlich wird in dieser Arbeit die Leistungsfähigkeit des SANets durch einen alternativen
Residual-Zweig auf Basis eines CFA-normalisierten Gaussfilters sowie durch eine kachelbare
Modifikation des Gauss-CFAs erhöht. Das modifizierte SANet übertrifft den herkömmlichen
dFSR-Algorithmus (Backes & Fröhlich, 2020) in Bezug auf Peak-Signal-to-Noise-Ratio
(PSNR) und Structural-Similarity-Index-Measure (SSIM).
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Acronyms

ACUDE adaptive chrominance-based universal demosaicing
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1. Introduction

1.1. Motivation

In the past, a lot of research has gone into the development of debayering algorithms to
overcome negative side effects like aliasing artifacts that arise from the highly repetitive
Bayer pattern. In contrast, literature says that irregular sampling patterns produce
less aliasing artifacts (see Dippé and Wold, 1985; Grosche et al., 2018a; Hennenfent
and Herrmann, 2007). Backes and Fröhlich (2020) propose the use of the demosaicing
with frequency selective reconstruction (dFSR) algorithm for universal demosaicing of
non-regular, pseudo-random color filter arrays.
However, during the last few years, the evolving machine learning technology has found its
way into the classical debayering process (see Buades et al., 2022; T. Zhang et al., 2022;
Zhou et al., 2018). In this context it seems worth investigating, whether convolutional
neural networks can also be used to demosaic pseudo-stochastic patterns and how they
compare to dFSR.

1.2. Hypotheses

The human eye has day vision receptors for red, green, and blue that are randomly
distributed across the retina. Neural networks could be assumed to be better than
traditional algorithms in dealing with irregularly sampled image data as they share more
similarities with the human brain. The CNN approach therefore is expected to produce
better results compared to the dFSRalgorithm (Subsection 2.2.3). Furthermore it is
assumed, that the CNN should be able to augment missing information with experience
learned during the training phase, which makes it superior to dFSR algorithm.
The dFSR algorithm reconstructs the green channel first, in order to enhance the red and
blue channels. The CNN is expected to leverage inter-channel correlations so that the
green channel also benefits from the red and blue samples. Also, the reconstruction of the
green channel through the CNN is expected to be superior when the entire RGB sensor
input is fed into the network, compared to solely the green sensor data.
The way CNNs are accelerated by parallel GPU computations should make the demosaicing
process much faster as with the conventional dFSR algorithm, which processes the image
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in many iterations.

1.3. Research Design

A supervised training pipeline based on the PixelShift200 image dataset (Qian et al.,
2021) is implemented to allow training and evaluation of different CNN architectures. The
main focus of this thesis is on modifying the SANet architecture (T. Zhang et al., 2022),
originally designed for classical Bayer patterns, to operate on (pseudo-)random color filter
patterns as studied by Backes and Fröhlich (2020). The implementation will use Python
and PyTorch (Paszke et al., 2019).
To prepare the image dataset and simulate the color filter array, a similar workflow to
Backes and Fröhlich (2020) is utilized in this thesis. To compare the demosaicing quality
of the machine learning approach presented in this thesis with their dFSR algorithm, the
same validation images are processed using the dFSR implemention from their repository
in MATLAB. Objective similarity and quality metrics including PSNR and SSIM are
chosen in accordance with Backes (2019) for the evaluation of the results.

1.4. Scope and Limitations

The experiments will be restricted to the two most promising irregular CFA patterns,
RandomQuarter and Gauss, investigated by Backes and Fröhlich (2020). The goal is not
universal demosaicing in the sense that a single CNN model can handle different CFAs.
Instead, a separate model is trained for each pattern.
As the training process and CNN architectures in this thesis are customized for irregular
CFAs, a general comparison of the results with classical Bayer patterns and their different
demosaicing algorithms is beyond the scope of this study.
Furthermore, this work focuses on processing individual images and does not deal with
the additional challenges of continuous video sequences. To focus on the irregularity of the
CFA, the demosaicing of noisy images is not examined, although this would be a logical
next step. The experiments do not examine the effects of an optical low-pass filter (OLPF)
either, as modern high-resolution cameras do not incorporate them.

1.5. Overview of the Thesis

Chapter 2 and Chapter 3 provide the necessary insight into the two disciplines Raw Image
Processing and Convolutional Neural Networks that are combined in this thesis. The
explanations focus on the aspects that are particularly relevant to the research questions
of this thesis.

4



1. Introduction

Chapter 4 describes the experimental setup in detail. It explains, how the training image
set was build and which CNN architectures were used. It gives an overview on the
comparison metrics used for evaluation of the results. Further this section documents the
modifications made to the network architecture for optimization.
Chapter 5 then evaluates the results of the experiments by comparing the different CFA
patterns, CNN architectures, and optimizations applied. Benchmarks with the dFSR
algorithm will be included.
Lastly, Chapter 6 concludes the thesis and suggests further research.
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2. RAW Image Signal Processing (ISP)

This chapter provides the necessary insight into Raw Image Processing, starting from the
camera’s RAW files, the color filter arrays (CFAs) explain the need of demosaicing. The
regular Bayer pattern, as well as alternative non-regular sampling patterns will be presented.
Finally the section about the sRGB color space will lead to a deeper understanding of the
data that will later be used for training the convolutional neural network (CNN) models.

2.1. From Linear Camera RAW Files to Viewable sRGB Images

Inside a digital camera, a series of image signal processing (ISP) steps take place before a
photo is typically stored as an 8-bit JPEG file on the camera’s memory card. Depending
on manufacturer and model, many cameras provide the option to output images as RAW
files, containing more or less unprocessed sensor data as well as metadata on the image
settings and exposure measurements. These files usually have a larger file size as they
contain image data in a higher bit depth of typically 10, 12 or 14 bits to cover the original
dynamic range of the camera sensor. (Sumner, 2014)
Photographers can use specialized RAW Utility software to process RAW files into final
photos, allowing for adjustment of exposure and white balance even after the image has
been captured. This can be particularly useful for recovering highlight structures that
may have been lost in the camera’s own JPEG file. Since this procedure is reminiscent of
developing photos in a darkroom using analogue film, RAW files are occasionally referred
to as digital photo negatives. (Sumner, 2014)
For this thesis, RAW files provide a way to research the internal signal processing of digital
cameras without having to unscrew a camera or require exclusive manufacturer data.
RAW files can also be decoded manually using a program library such as dcraw, which
provides a common interface for the RAW formats of various camera models and allows to
build a custom RAW image processing pipeline e.g. in a programming environment such
as MATLAB or Python.

2.1.1. Raw Image Processing Pipeline

To receive a viewable output image, several steps are typically applied to the raw sensor
data, that form the raw image processing pipeline, as shown in Figure 1. Some cameras
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Linearization DemosaicingWhite Balance
Color Space
Correction

Brightness and
Contrast Control

Raw sensor
data

Viewable
output image

Figure 1: Raw Image Processing Pipeline. Adapted from Sumner, 2014, Fig. 3

use a custom color encoding in their RAW files, defined by a lookup table. As a first step,
these values need to be transformed back to the linear color domain.
The colors of a scene are influenced by the light that illuminates it. The human eye
naturally adjusts to different colors of light sources. However, when looking at an image
on a screen, the difference in lighting to the surrounding room becomes obvious. To
compensate for this difference, the images are adjusted to an ideal environment. This
operation is called white-balance and is merely the process of scaling the red and the blue
channel of the image to accomplish the optimal relation between red, green and blue colors.
Often, the right values can be extracted from the RAW image file’s metadata, where the
camera stores its illumination measurements.

The next step in the pipeline is demosaicing, which is the process of reconstructing a fully
sampled RGB image from the mosaic sensor image, which will be explained in Section 2.2.
Finally, the image needs to be transformed to the color space, such as sRGB, which
corresponds to the output screen. Further brightness and contrast adjustments might be
needed to produce the right image impression. (see Sumner, 2014)
In order to focus on the challenges that arise with (pseudo-)stochastical CFAs this bachelor
thesis does not cover the topic of noise reduction and all experiments are conducted with
images that are assumed to be noise-free. However, it should be mentioned at this point
that noise reduction is an important step to be considered in the raw image processing
pipeline when it comes to images captured in non-ideal conditions. Noise can also have a
significant impact on the result of the demosaicing process. Depending on the algorithm,
noise can be amplified by demosaicing and lead to color artifacts (see Hasinoff, 2014).
For this reason noise reduction is best handled before or together with demosaicing (see
Gharbi et al., 2016; W. Xing and Egiazarian, 2021).

2.1.2. sRGB – a Gamma 2.2 Transformed Color Space

The sRGB color space was initially proposed by Hewlett-Packard and Microsoft as the
standard color space for the Internet (Stokes et al., 1996). After being widely adopted, it
was specified by the IEC 61966-2-1 standard (Commission et al., 2003). It has a built-in
gamma 2.2 transform, which matches the typical intensity-to-voltage response of cathode
ray tube (CRT) displays of that era (Gonzalez & Woods, 2008, p. 111). CRT screens
have since been replaced by newer screen technologies such as LCD, DLP, LCoS, or

7
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Figure 2: Power-Law Transform Curves for different Gamma values and c = 1. Adapted
from Gonzalez and Woods, 2008, p. 111.

OLED/AMOLED, which no longer have a physical intensity-to-voltage response like the
old CRT (Poynton, 2018, p. 26). These newer screens require digital compensation for the
transformation before displaying an sRGB signal.
Despite this, the Gamma 2.2 domain continues to play a significant role due to its close
correlation with human brightness perception. Since this aspect of the sRGB color space
is relevant to the experiments presented in this thesis, it will be discussed in detail below,
after an explanation of how power-law (gamma) transformations and sRGB work in
general.
A power-law (Gamma) transform can be basically described as

s = c · rγ , (2.1)

with r being the input and s being the output intensity level, c and γ being positive
constants (Gonzalez and Woods, 2008, p. 111).
The transform can be compensated with the inverse gamma transform

s′ = r′

c

1
γ

, (2.2)

with r′ and s′ being the in- and output intensity levels. To prepare an image for a display
device that has a specific gamma characteristic, the inverse transform must first be applied
to the image (Gamma correction) to obtain the desired appearance. Figure 2 visualizes
the transform function for various γ values and c = 1.
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2. RAW Image Signal Processing (ISP)

The sRGB transform function and it’s inverse are defined by a slightly more complex
composition of the basic power-law transform. It contains a small linear part to reduce
noise and to avoid infinite slopes at position 0. Due to the additional offset and scaling,
the exponent γ = 2.4 is equivalent to an effective γ ≈ 2.2 (see Burger and Burge, 2022, p.
436).
According to the IEC 61966-2-1 standard (Commission et al., 2003), the conversion of an
sRGB intensity value x to the linear color domain is defined by

fsRGB→lin(x) =

⎧⎨⎩12.92 · x, for x ≤ 0.0031308,

1.055 · x1/2.4 − 0.055, for x > 0.0031308.
(2.3)

The conversion linear color intensity value x′ to sRGB color space is defined as

flin→sRGB(x′) =

⎧⎨⎩
x′

12.92 , for x′ ≤ 0.04045,(︂
x′+0.055

1.055

)︂2.4
, for x′ > 0.04045.

(2.4)

To convert an RGB image from linear color space to sRGB and back, the intensity values
from each color channel are transformed separately using the above functions.

2.1.3. Non-Linear Human Brightness Perception and Perceptual Uniformity

In terms of human brightness perception, the sRGB color space has an advantage compared
to linear RGB encoding: The sRGB color space is very close to the inverse of human
sensitivity to brightness, allowing an efficient use of the available bit depth. This is
especially relevant for 24-bit RGB encoding, where only 28 = 255 of discrete intensity
values are available per channel. This perceptually uniform Gamma encoding results in
more brightness sampling in the dark areas, where the human eye can also distinguish
more levels than in the brighter intensity areas (Poynton, 2018, p. 25).

2.1.4. RGB Sensor Sensitivity

The photoelectric elements on the sensor plane convert incoming light photons to electric
current, which is digitally measured. In order to capture colored images, they are captured
in three light components, red, green, and blue. Color filters are applied on top of the
sensor pixels, so that parts of the spectrum of visible light get filtered. This makes the
pixel mainly sensitive for either red, green, or blue light components. However, similar to
human vision, they measure a range of light frequencies rather than only one specific red,
green, or blue frequencies. In fact the color sensitivity ranges overlap, as it is shown in
Figure 3. For the demosaicing task this is an important fact, since it means that there
exists RGB cross-channel correlations.

9
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Figure 3: Spectral response of a typical digital CMOS RGB camera sensor. (Own visual-
ization based on the measurements of a Canon 600d from the Camera Spectral
Sensitivity Database, Jiang et al., 2013, Creative Commons BY-NC-SA 4.0)

2.2. Color Filter Arrays and Demosaicing

Typical camera sensors can only capture a single light intensity value per pixel1. In order
to be able to capture the three channels of colored images on a single sensor plane, a
spatially alternating color filter array (CFA) is used, as shown in Figure 4: Each sensor
pixel has a single color filter applied on top making it sensitive for either red-, green- or
blue light components. The sensor’s output is not yet a full RGB image but a single
channel image containing a mosaic of single color component values.
Most today’s (photo- or video-)cameras contain a so-called Bayer sensor, patented in 1976
by its inventor Bryce Edward Bayer and Eastman Kodak Company (Bayer, 1976). The
Bayer CFA is characterized by its repetitive two-by-two, red-green-green-blue pixel filter
pattern. The captured pixel values can be decomposed into a three-channeled red, green,

1An exception to this is a stacked sensor design currently in development where multiple color frequencies
can be measured in a single pixel (see Sigma Corporation, 2022).

Figure 4: Photo Sensor with Bayer CFA Layout: Spatially alternating color filters allow
to capture three color channels on a single sensor plane. Adapted from Sumner,
2014, Fig. 2
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2. RAW Image Signal Processing (ISP)

and blue (RGB) image with each channel lacking a proportion of pixels in between.
The process of reconstructing these gaps by interpolating the neighboring pixels is referred
to as demosaicing or debayering when dealing with the Bayer pattern in particular.
Demosaicing is an under-determined mathematical problem, which means that the missing
information cannot be fully recovered when reconstructing a fully sampled RGB image
from a mosaic sensor (see Gunturk et al., 2005).
The regularity of the Bayer sampling grid can interfere with thin or repetitive image
structures that occur at similar spatial frequencies. These undersampling errors cause
zipper artifacts or color moiré during demosaicing, which are visually distracting and
difficult to remove afterwards. Improving existing demosaicing approaches is an ongoing
research topic. The objective is to extract maximum information from the mosaic image to
enhance the perceived image quality while avoiding amplification of noise or introduction
of moiré or zipper artifacts.

2.2.1. Regular Debayering Algorithms

According to Gunturk et al. (2005), demosaicing approaches can be divided into three
groups. The first group can be summarized as “heuristic approaches” as they do not
provide an exact solution to a mathematically formulated problem but rather computational
efficient approximations based on different assumptions about digital camera sensors and
color images.
Li et al. (2008)
The simplest heuristic debayering algorithms reconstruct each channel individually without
taking inter-channel-correlations into account (see Li et al., 2008). They define recon-
struction rules to interpolate the missing values inside a color channel depending on the
arrangement of the surrounding available samples. An example of this is linear debayering
(see Figure 5) which fills the gaps by linear averaging four neighboring samples (for green
channel) and two or four neighboring samples (for red and blue) depending on the location
in the Bayer pattern. The border pixels of the image are either cropped or handled with
additional rules based on one or two neighboring samples. (see Gunturk et al., 2005; Li
et al., 2008)
More advanced heuristic debayering approaches rely on assumptions about image charac-
teristics and interchannel correlations to regularize the demosaicing problem. For example,
the assumption of spatial smoothness and constant hue between adjacent samples allows
the application of various mathematical solutions. (see Gunturk et al., 2005) Most of them
rely heavily on the green channel due to it’s higher sampling density to reconstruct a high
quality luminance channel. The remaining color channels are then interpolated e.g. in a
green difference domain. (see Li et al., 2008) This technique is also applied by Backes and

11



2. RAW Image Signal Processing (ISP)

Figure 5: Linear debayering: The smaller arrows demonstrate how the algorithm approxi-
mates missing color values in various sample constellations by averaging two or
four neighboring samples of the same channel.

Fröhlich (2020) for their dFSR algorithm described in Subsection 2.2.3.
In the recent years, machine learning models for debayering have shown to outperform
existing approaches (cf. Kumar et al., 2023; Liu et al., 2020; Qian et al., 2021; W. Xing
and Egiazarian, 2021). CNNs for debayering are more data driven: they rely on learned
data characteristics from a training image set, rather than prior assumptions (see Li et al.,
2008). Chapter 3 will elaborate on CNNs for demosaicing.

2.2.2. Irregular CFA Patterns

In the past, extensive research has been conducted on the development of debayering
algorithms to overcome negative side effects such as aliasing artifacts that result from the
highly repetitive Bayer pattern. However, some literature suggests resorting to alternative
irregular CFA patterns for less aliasing errors (see Dippé and Wold, 1985; Grosche et al.,
2018a; Hennenfent and Herrmann, 2007). Non-regular color filter arrays (CFAs) however
are incompatible with conventional debayering and need universal demosaicing approaches,
that will be part of Subsection 2.2.3.
When designing pseudo-random sampling patterns, it is important to strike a balance
between randomness and uniformity. The aim is to distribute color samples randomly
to prevent aliasing effects; however, each channel’s sampling density should be uniform
without significant gaps to achieve a location-invariant reconstruction. (see Backes and
Fröhlich, 2020; Grosche et al., 2018a)
Figure 6 displays several non-regular sampling patterns that were examined by Backes
and Fröhlich (2020), as well as the regular Bayer pattern. This section provides a brief
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Figure 6: RGB Sampling Patterns. From left to right: Condat, Random, RandomQuarter,
RandomICIPrgb, Gauss, and the Bayer pattern for comparison. Adapted from
Backes and Fröhlich, 2020

summary of the different (pseudo-)stochastic approaches, before discussing two of them
(RandomQuarter and Gauss patterns) as part of the experimental setup in Subsection 4.1.3.
The Random sampling pattern is a uniform discrete distribution of the RGB samples with
no additional constraints.
The RandandomQuarter pattern, based on Schöberl et al. (2011), consists of a random
permutation of the four colors red, green, green, and blue within each 2 × 2 pixel block. It
will be further discussed in Subsection 4.1.3.
RandomICIP is a RandomQuarter variation by Grosche et al. (2018b) that reduces larger
voids in the color channels and regularity.
The Gauss pattern distributes the color samples based on a Gaussian probability to
maximize the distance between same colored samples, as described in Grosche et al.
(2018a). It will be further discussed in Subsection 4.1.3 and Subsection 4.4.4.
Finally, the Condat pattern (Condat, 2010) is systematically built from 3 × 1 pixel blocks
to avoid same-colored neighbors. The Condat pattern consists of an equal number of
samples from each color, whereas all other patterns follow the Bayer color ratio of 25%
red, 50% green, and 25% blue samples. (see Backes and Fröhlich, 2020)

2.2.3. Universal Demosaicing with dFSR

Backes and Fröhlich (2020) propose demosaicing with frequency selective reconstruction
(dFSR), an algorithm for universal demosaicing that can also handle non-regular CFA
patterns. Based on a signal processing technique called frequency-selective reconstruction,
it attempts to infer a spatial frequency distribution from the available samples in each
channel of the image. Once the image is represented in it’s spatial frequencies, it can be
transformed back into a fully sampled RGB image.
The dFSR algorithm processes the image in small overlapping blocks to produce a seamless
uniform output. For each block a model of weighted Fourier basis functions is built
iteratively to approximate the available color samples. This makes image reconstruction
a rather computationally heavy task compared to simpler debayering algorithms. The
reconstruction of a 1920 × 1080 pixel (FullHD) frame takes the authors about 40 minutes
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Figure 7: dFSR with green color difference domain. Adapted from Backes, 2019, Fig. 3.11

on a standard computer, making it unsuitable for in-camera or realtime purposes. However,
the dFSR algorithm demonstrates, that irregular CFAs effectively reduce aliasing while
slightly increasing noise and image smoothness. (see Backes, 2019)
The dFSR reconstructs each image channel red, green, and blue individually. However,
Backes and Fröhlich (2020) achieve an improved demosaicing quality by reconstructing
the green channel first, which has the highest sample density and use it as a luminance
reference. In a second step, the red and blue channel are reconstructed in a green color
difference domain, as depicted in Figure 7. This way, the red and blue channel benefits
from high quality luminance details from the green channel. This technique, based on
assumptions about the color-channel correlations, is also used for regular debayering
algorithms, as described in Subsection 2.2.1.
Another alternative universal demosaicing algorithm is adaptive chrominance-based uni-
versal demosaicing (ACUDE) (see C. Zhang et al., 2016). According to Backes (2019) it
does not perform as good as dFSR on irregular sampling patterns. Therefore, only the
dFSR algorithm is used for comparison in this thesis.
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3. Convolutional Neural Networks (CNNs)
for Demosaicing

Convolutional Neural Networks (CNNs) can be categorized as a supervised machine learning
approach which is a form of artificial intelligence, as depicted in Figure 8. Currently, they
find application in diverse fields, including demosaicing of camera data.
This chapter first describes what supervised training is, and why it is particularly suitable
for the demosaicing task. Following this, the chapter describes the discrete convolution
operation, which enables efficient processing of image data and is the most important basic
building block of any CNN. Building upon that, the concept of feature extraction inside
basic CNNs is described. Further, the UNet architecture is described as an example of a
deep neural network Figure 8 for image processing tasks. Regarding the main research
topic of this thesis, demosaicing irregularly sampled images, the limitations of classical
convolution are highlighted. Spatially adaptive convolution and the SANet architecture
(T. Zhang et al., 2022), is offered as a potential solution, which will be tested later in the
experiments.

Figure 8: CNNs in the context of artificial intelligence
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3.1. Convolution – the Base of Image Feature Extraction

Before introducing spatially adaptive convolution in Subsection 3.3.3 as a specialized
form of convolution, it is important to develop a deeper understanding of how classical
convolution works and how it is implemented for efficient graphical processing unit (GPU)
processing.

3.1.1. 2D Discrete Convolution for Image Filtering

Convolution is a mathematical concept that existed long before the neural networks were
invented and is used in image processing and general signal processing. Depending on the
values of the filter kernel a convolutional operation can apply very different kind of filtering
operations to the input. Figure 9 shows various filter kernels. E.g. a Gaussian kernel
produces a blurred version of the input image, a Sobel kernel detects edges, a diamond
kernel acts as a sharpening filter. The last Sobel example shows how the horizontal and
vertical Sobel filter gradient results Gx and Gy can be combined to detect edges in all
directions. This is already an example of how more complex feature detectors can be built
by combining multiple simple convolutional filter operations.
Figure 10 shows the 2d discrete convolution of a 5 × 5 pixels image layer with a 3 × 3
kernel matrix to produce a 3 × 3 pixels image result. The kernel is positioned on top of the
input image and applied in a sliding window fashion. For each sliding position the values
of kernel are multiplied by the values of the image region under the kernel and summed up
(scalar product) to result in one pixel of the output image. (see Dumoulin and Visin, 2018)
Most machine learning frameworks, including PyTorch, actually implement cross-correlation
instead of convolution (see “Conv2d”, 2023), although the two operations have a subtle
difference. Cross-correlation applies the kernel without reflection, while convolution applies
the kernel reflected about both axes, equivalent to a kernel rotated by 180-degree (Khan
et al., 2018, p. 46). In the context of machine learning, this difference is indeed negligible
as long as the same operation is used consistently. This thesis explains the cross-correlation
operation while referring to it as convolution in that broader sense.
In general, the image output IO of basic 2d discrete convolution is obtained with

IO [u, v] =
K−1∑︂
i=0

K−1∑︂
j=0

II [u + i, v + j] · H [i, j] , (3.1)

where II is the input image and H ∈ RK×K is the filter kernel. Throughout this thesis,
images and kernels are indexed with the spatial origin [0, 0] being at the top left position.
(cf. Burger and Burge, 2022, p. 96)
Convolution can be run efficiently on GPUs and SIMD-enabled processors because it can
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Figure 9: Different filter kernels applied to an image with 2d discrete convolution. The
zero point is represented as medium gray for the Sobel components, as the filter
output contains negative values.
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Figure 10: The nine convolution steps of a 5 × 5 image (blue) with a 3 × 3 kernel (shaded
overlay) lead to a 3 × 3 output image (green). Adapted from Dumoulin and
Visin, 2018

17
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be represented as matrix multiplication.
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3.1.2. Convolutional Layers for Neural Networks

When convolution is used inside neural networks, however, the filter kernels are not
predefined constants. Instead, they usually are part of the neural network’s weights that
are learned during the training phase of the neural network e.g. using supervised learning.
It’s values are typically initiated with random numbers before they get adjusted iteratively
during training. A back propagation algorithm like the Adam optimizer is able to adjust
the weights in a way that minimizes the output error of the network, that is measured by
a custom defined loss-function. (see Khan et al., 2018, p. 46)
The convolutional layer is the most basic processing block of every CNNs. It extends
the two-dimensional convolution operation by the ability to process images with multiple
channels. This can be RGB images in their three channels red, green, and blue, which are
input into the first layer of a CNN – or output at the last layer as the prediction result of
a CNN. However, in the hidden layers of a CNN much higher channel counts are used to
represent abstract image features, which is why the image channels are also referred to as
feature maps.
For the input FI ∈ RH×W ×Ci a convolutional layer produces the output FO ∈ RCo×K×K

by applying a W ∈ RCo×Ci×K×K filter kernel matrix in a sliding window to the image.
An important aspect of convolutional layers is, that the number of input channels Ci and
the number of output channels Co can be chosen independently. This way, a convolutional
layer can remix the input to a higher number of feature maps. In conjunction with a
decrease of spatial resolution, this transform often is applied as part of feature extraction,
which will be covered in Subsection 3.2.1. On the other hand, reducing the number
of feature maps can be useful at the end of a CNN, to flatten a higher dimensional
representation to a lower dimensional output, as it will be described in Section 3.2.
Given the example of Ci = 3 and Co = 1, the kernel is in fact a set of three K × K filters,
each operating on one of the input feature maps. For each sliding position, each filter is
multiplied with the values of the receptive field on the corresponding input feature map.
The summation of all three filter results yields one output pixel of FO.
For an output FO with multiple channels, this kind of Ci × K × K filter set is needed
for each of the output channels, adding another dimension to the kernel. To convolve an
input FI ∈ RH×W ×Ci to an output FO ∈ RCo×K×K , therefore a kernel W ∈ RCo×Ci×K×K

is needed. (see Khan et al., 2018, p. 46).

3.1.3. Convolution Variants and Pooling Layers

This subsection describes how the output size of a convolutional layer can be controlled
by the use of zero padding and strided convolution. After that, the concepts of transposed
convolution and max-pooling are presented.
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Figure 11: Same padding convolution: zero-padding applied before convolution maintains
the original image size at the output (adapted from Dumoulin and Visin, 2018).

Convolution usually reduces the both image’s width and height by K−1, as the kernel stays
inside the image during sliding. To compensate for the size reduction, an additional pixel
padding can be applied around the input before convolution, as visualized in Figure 11.
This padding can be filled with zeros or the values of the nearest border pixels of the
image.
To build a convolution layer that outputs feature maps which have the same size as the
input maps a stride of 1 is used together with a padding value of (kernelsize − 1)/2. This
allows the kernel’s center to step onto every pixel of the input. (Khan et al., 2018, p. 49)
Strided convolution is a way of reducing the spatial dimensions of the output FO. The
stride parameter controls the step size by which the kernel moves on the input FI. It has
a direct impact on the output size as each step position of the kernel convolves to one
output pixel. For stride=1, the kernel is translated by one unit on the input for each
convolution step, which is also referred to as unit stride. Figure 12 shows how a stride
of 2 leads to an output with reduced spatial dimensions. If no padding is employed, the
output width Wo is related to the input width Wi, the kernel size K, and the stride S by

Wo = ⌊Wi − K

S
⌋ + 1. (3.2)

The output height depends on the input height respectively. (Dumoulin & Visin, 2018)
Strided convolution can be used as an alternative to max-pooling (cf. GoogLeNet, Szegedy
et al., 2014). Max-pooling will be described in the next section.
Instead of an input pixel region of the kernel’s size affecting a single output pixel for each
kernel step, transposed convolution works the opposite way: for each kernel step, a single
input pixel affects output pixels in a region of the kernel’s size. This way a larger output
image than the input can be achieved, which is not possible with classical convolution.
The transposed convolutional layer is used in encoder-decoder architectures mainly as a
counterpart to the classical convolutional layer to undo its spatial reduction. (see Khan
et al., 2018, p. 57)
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Figure 12: Convolving a 3 × 3 kernel over a 4 × 4 input with a stride of 1 unit (adapted
from Dumoulin and Visin, 2018).

Figure 13: 2 × 2 Max Pooling with stride=2. (Adapted from Sultana et al., 2018, Fig. 3).

The details of transposed convolution will not be discussed in detail, as for image processing
it is mostly replaced by a fixed bilinear upscale filter followed by a classical convolution
layer (cf. (Ronneberger et al., 2015; T. Zhang et al., 2022)).
The max-pooling layer uses a max-operation kernel instead of kernel multiplication with
summation: The largest pixel of a kernel’s receptive field becomes the output pixel. The
other pixels are discarded. In a pooling layer, the kernel is usually moved without overlap,
i.e. with a step size of stride = kernelsize. This reduces the width and height of the
image by half for a 2×2 kernel, as shown in Figure 13. When the input consists of multiple
feature maps, max pooling is normally applied to each feature map individually.

3.2. CNNs for Image Processing

3.2.1. Feature Extraction Inside CNNs

Convolutional neural networks (CNNs) like the AlexNet (Krizhevsky et al., 2017) leverage
the fact that multiple convolution operations chained together can build even more complex
pattern matching and image transformation filters. Today, CNN models are often superior
to conventional algorithms for image processing tasks such as demosaicing, denoising, and
upscaling because they take into account learned experience about image content during
reconstruction.
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Figure 14: Typical CNN architecture of an image classifier consisting of general purpose
feature extraction part and a classification part. (Figure based on Mathworks
Inc, 2021, p. 8)

A basic CNN (or ConvNet) combines multiple pairs of convolution and pooling layers to
form the feature extractor. While a single convolution operation is only able to detect
basic local features like gradients or edges, this group of layers is able to construct more
complex feature representations by feature combinations of the previous layers. Layer by
layer the information about what is in the image is enhanced while information about the
where is lost. In Figure 14, three-dimensional boxes indicate how the feature representation
changes with each layer of the CNN. Each convolution and pooling iteration decreases
the spatial dimensions of the features, while increasing the number of feature maps as
indicated by the horizontal length of the boxes.
The feature detection starts with the full resolution image input of a car. The three image
channels, red, green, and blue can be seen as three initial feature maps. The line beams
indicate how the kernel’s receptive field on the input forms one pixel of the convolution
output. With the convolution layers, the number of feature maps increases, indicated
by the box becoming longer. The Max-Pooling steps reduce spatial resolution without
influencing the feature dimension.
After feature extraction layers, further layers follow depending on the usecase. For
the classification task, as shown in Figure 14, the extracted features are flattened and
serialized using a fully connected layer and an activation function to produce classification
probabilities for each class label.
As depicted in Figure 14,a non-linear activation function, such as ReLU, is applied after
convolution as illustrated in Figure 14. For image classification tasks, the relationship
between the image and its target class is non-linear. The required flexibility to model
non-linearity is achieved through the use of activation functions. A CNN lacking non-linear
operations would be limited to learning linear relations. (see Khan et al., 2018, p. 54)
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Figure 15: Popular activation functions

Figure 15 provides an overview of commonly used activation functions, including hyperbolic
tangent and sigmoidal functions, rectified linear units (ReLU), and leakyReLU.
In earlier CNN architectures, hyperbolic tangent and sigmoidal activations were utilized.
However, it was discovered that the newer ReLU function allows for faster training
while also mitigating the vanishing gradient problem of hyperbolic tangent and sigmoidal
activations (Murphy, 2016). The ReLU function cuts off values below zero by mapping
them to zero. To prevent weights from no longer adapting during training, LeakyReLU
preserves negative values by damping them by a factor of 0.1. (see Khan et al., 2018, p.
54)
Unlike convolution and pooling operations, activation functions do not alter the data’s
shape because they are applied element-wise.

3.2.2. From Image Classification to General Image Processing

In contrast to the CNN described in Figure 14, the UNet (Figure 16) is able to preserve
the spatial information about the image features. It was initially proposed by Ronneberger
et al. (2015) for biomedical image segmentation. Image segmentation is a classification
task on the pixel level: While general image classification networks typically predict the
assignment of an entire image to a specific class as a single probability value, the UNet is
designed to predict an assignment probability for each pixel. As the prediction output
has the same spatial dimensions as the input image it can be treated as an image with
multiple grayscale channels representing segmentation masks of different classes.
The ability of outputting another image is what makes the UNet architecture applicable far
beyond biomedical image segmentation and predicting class assignment probabilities. In
fact UNet has been adopted to a wide range of image reconstruction tasks like for example
high dynamic range reconstruction (Eisemann et al., 2020) or denoising (Gurrola-Ramos
et al., 2021).

23



3. Convolutional Neural Networks (CNNs) for Demosaicing

copy and crop

input
image

tile

output 
segmentation 
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

5
7
2

 x
 5

7
2

2
8
4
²

64

128

256

512

5
7

0
 x

 5
7
0

5
6
8
 x

 5
6
8

2
8

2
²

2
8
0

²
1

4
0

²

1
3

8
²

1
3

6
²

6
8
²

6
6

²

6
4

²
3

2
²

2
8
²

5
6
²

5
4
²

5
2

²

512

1
0
4

²

1
0

2
²

1
0

0
²

2
0
0
²

3
0
²

1
9

8
²

1
9
6
²

3
9
2

 x
 3

9
2

3
9

0
 x

 3
9
0

3
8

8
 x

 3
8

8

3
8
8
 x

 3
8
8

1024

512 256

256 128

64128 64 2

conv 1x1

Figure 16: UNet Architecture (Adapted from Ronneberger et al., 2015, Fig. 1).

3.2.3. The UNet’s U-Shape or the Encoder-Decoder Principle

The UNet’s architecture (Figure 16) can be described in two parts: The left side is the
“contracting path” which reduces the spatial resolution with each level down while increasing
the amount of feature maps. The right side is the “expansion path” which increases spatial
resolution again while reducing the feature dimension. Both paths together form the
eponymous U-Shape which can be seen as a bottleneck: The reduction of the spatial
dimensions is a constraint that forces the neural network to find a lightweight abstract
representation during training that is optimal in preserving the relevant information.
Reminiscent of image compression algorithms like JPEG, the two parts of the UNet
architecture are also referred to as encoder and decoder (e.g. Y. Xing et al., 2020) as the
spatial image samples are compressed into an abstract feature representation and then
decoded back to the original spatial resolution.

3.2.4. UNet Optimizations

It can be seen in Figure 16 that the input dimensions are bigger than the output because
the original UNet handles arbitrarily large images by breaking up the input into separate,
overlapping tiles. The overlapping padding around each tile offers additional context for
the border regions to guarantee that the processed tiles can be seamlessly reassembled.
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The padding is cropped during the process, represented by the dashed lines ontop of the
blue boxes in Figure 16.
Skip connections are used to allow information to bypass the “bottleneck” on the different
levels. This is done by copying the output feature maps from the left side and concatenating
them with the corresponding inputs on the right side. Ronneberger et al. (2015) show
that these skip connections can improve performance without significantly increasing the
complexity of the model as they make it easier for the model to preserve pixel-level high
resolution details. Recent experiments by Eisemann et al. (2020) confirm that image
reconstruction tasks can benefit from skip connections.

3.3. Universal Demosaicing with Convolutional Neural Networks

3.3.1. Training Demosaic Models With Supervised Learning

To teach a CNN the demosaicing process, the supervised learning approach is used because
the desired output is information that can be provided during training. The required
training data consists of pairs of mosaic image inputs and their corresponding optimal
demosaiced targets, which are the true labels, the desired outputs of the CNN. Section 4.1
within the Experimental Setup chapter therefore deals in detail with compiling such a
training set by simulating mosaic images from fully sampled RGB ground truth images.

3.3.2. Handling Regular vs. Irregular Image Samples

This chapter is about CNN architectures that can be trained for demosaicing of arbitrary
CFA patterns. Most CNN architectures designed by the scientific community for demo-
saicing assume Bayer CFAs (cf. Ignatov et al., 2020; Liu et al., 2020; Qian et al., 2021;
W. Xing and Egiazarian, 2021; T. Zhang et al., 2022; Zhou et al., 2018). However, it
can be assumed that at least some of them can be trained on alternative random and
pseudo-stochastic patterns, even if this is not explicitly intended by the respective authors.
This becomes difficult with architectures that are too optimized for the Bayer pattern, or
even contain hard-coded preprocessing steps that make use of the repetitive Bayer layout.
More promising are those approaches that provide a separate input for the CFA mask
and only specialize in the spatial color encoding of the input through training. In the
following, we discuss the requirements for this and describe spatially-adaptive convolution,
as implemented in the SANet architecture, as a possible solution for universal demosaicing.
Most CNNs for debayering use the regularity of the pattern to first group the mosaic
sensor pixels into four separate color planes by the four positions R,G,G,B of the Bayer
pattern. These color channels have only half the pixel height and width and have to be
upsampled later, but they are spatially homogeneously sampled, i.e. they do not contain

25



3. Convolutional Neural Networks (CNNs) for Demosaicing

any missing pixel information.
Irregular CFA patterns do not allow such a decomposition of the mosaic sensor image into
four consistent layers. Instead, by knowing the CFA mask, the mosaic sensor image can
be decomposed into the three layers for the colors red, green, and blue. However, since
each pixel position is defined in only one color channel, these channels contain a portion
of undefined values at irregular positions, denoted by zeros, for example. These random
holes impose an additional structure overlaying the image information that interferes with
pattern recognition within the image.

3.3.3. AdaConv – a Spatially Adaptive Convolutional Layer for Demosaicing

T. Zhang et al. (2022) proposes an alternative method to apply convolution directly to
mosaic sensor images: a modified, spatially adaptive convolution layer, AdaConv, for CNNs.
Instead of a static kernel that is applied to each location of an image in a sliding window
fashion, its convolution kernel is adjusted differently for each location depending on the
CFA pattern that must be provided as additional input. While T. Zhang et al. (2022),
like most demosaicing research, designed their SANet architecture for regular Bayer CFAs,
it is subject of this thesis to show that it is indeed applicable for universal demosaicing.
This section first explains the difference between classical and spatially adaptive convolution
and shows how it can be made more efficient by using the kernel decomposition technique.
Afterwards, this section illustrates the design of the spatially adaptive convolution block
AdaConv for demosaicing purposes (T. Zhang et al., 2022).
Convolution inside a classical convolution layer can be described as

FI ∗ W1 = FO, (3.3)

with the filter kernel W1 ∈ RCo×Ci×K×K . Here, Co represents the number of output
channels, Ci represents the number of input channels, and K represents the kernel size.
Spatially adaptive convolution,

FI ∗∗ H = FO, (3.4)

in its pure form would mean that a separate K × K filter would be applied for each
sliding position on the input image. Performing spatially adaptive convolution on an
input image FI with same padding and a stride of 1 needs a filter kernel H of size
Co × Ci × H × W × K × K, which is H · W times larger than a classical convolution kernel.
This would mean a massive increase in memory usage and number of parameters to be
trained, particularly when processing larger images. (see T. Zhang et al., 2022)
The authors of SANet use kernel decomposition to reduce memory consumption to only
1.8 times that of classical convolution (see T. Zhang et al., 2022). Instead of a single
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Figure 17: Spatially adaptive Convolution Layer (AdaConv) with separate processing of
the sampling pattern information (red) and image information (black). The
kernel extraction branch (purple) derives the spatially adaptive kernel G from
CFA pattern information. Own illustration based on the SANet source code
(T. Zhang, 2022, October 2/2023)

adaptive convolution operation with the large adaptive kernel H, they combine a classical
convolution with a spatially adaptive convolution in a row, with(︂

FI ∗ F
)︂

∗∗ G = FO. (3.5)

Here, F ∈ RCo×Ci×H×W ×K2×K2 represents the classical convolution kernel and G ∈
RH×W ×K2×K2 the spatially adaptive kernel. K2 and K1 are chosen so that

K2 + K1 − 1 = K, (3.6)

to maintain the total receptive field of H. The conversion of the number of input feature
maps Ci to the number of output features Co is accomplished with F while kernel G is
shared across the feature dimension. (T. Zhang et al., 2022)
The complete structure of the spatially adaptive convolutional layer, AdaConv, is depicted
in Figure 17. It includes separate inputs for CFA pattern PI and image information FI .
The bottom row (black) shows how F and G process the image information from input FI

to produce the output image feature maps FO.
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The spatially adaptive kernel G differs from the other kernels, as it is not directly learned
as a weight, but rather derived from pattern information PI . The weights W2 and W2

learn a kernel extraction function (purple), that ouputs G in the appropriate shape.
Finally, the top row of Figure 17 (red) shows, how the pattern information PI is convolved
with a simple K × K kernel W1, resulting in the separate pattern information output PO.
This allows further parallel processing of the pattern information in architectures like the
UNet, as explained in the next section. (see T. Zhang et al., 2022)
The official PyTorch implementation of the spatially AdaConv layer (T. Zhang, 2022,
October 2/2023) has the similar parameters to those known from a standard PyTorch conv
layer to control stride, kernel size as well as the number of input and output features. This
makes it applicable as a replacement for classical convolutional layers in any convolutional
network architecture.
The idea behind the approach by T. Zhang et al. (2022) is that each pixel position requires
a different interpolation method, depending on the CFA pattern at that position. This was
already illustrated in Subsection 2.2.1 for linear debayering and is even more applicable to
irregular CFA patterns, where an even larger variety of local sample constellations occur.
Simple convolution applies the same filtering kernel to all pixel positions, which means that
only a single interpolation is possible per learned feature. Only through the combination
of multiple convolution and pooling layers can adaptive structures be developed. Spatially
adaptive convolution layers provide the required flexibility at the feature level and are
superior to classical convolution in demosaicing, as the investigations of T. Zhang et al.
(2022) show.

3.3.4. SANet – Spatially Adaptive Convolution Inside the UNet

The SANet can be understood as two interlinked UNets - one for the mosaic image input
and one for the CFA pattern (see Figure 18, left). The first UNet is responsible for
image reconstruction, with pattern information from the second UNet injected at each
level. In their official PyTorch implementation, the authors achieve this duality within a
single UNet, with every network layer featuring separate inputs and outputs for image and
pattern information. Adaptive Convolution (AdaConv) Layers are the points where pattern
information is combined with image information, and replace the convolution blocks of
classical UNets. Instead of employing a singular AdaConv per Unet Level, they always
appear as a pair of two, forming a Resblock, as depicted in Figure 18 on the righthand side.
Using two convolutional layers in sequence is an efficient way to increase the receptive
field compared to a single convolution with a larger kernel size (cf. Zhou et al., 2018).
The ResBlock includes a local residual shortcut that goes from the input to the output
through a simple 1 × 1 convolution to convert between different numbers of input and
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Figure 18: SANet architecture (left) and ResBlock (right), adapted from T. Zhang et al.,
2022

output features.
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This chapter documents the experiments that are conducted during this thesis. The first
thing is building the training set by simulating labelled data from an existing image set.

4.1. Building the Mosaic Image Training Set

Since this thesis utilizes supervised learning, so-called labeled data is needed to train the
CNN. In case of demosaicing this means pairs of raw CFA sensor images (CNN input) and
their corresponding optimal reconstruction (ground truth). The optimal reconstruction
would be the one identical to the image of a hypothetical camera that captures full rgb
samples for every pixel.
Cameras with irregular CFA filters, as they are examined in this thesis, are not yet
developed. Therefore, actual raw mosaic sensor images cannot be used as training input
for the neural network. Even if this type of data existed, it would be challenging to employ
in supervised learning since the corresponding perfect reconstruction, required as target
labels for training, is not obtainable. However, Backes and Fröhlich (2020) have shown
that mosaic raw images from any CFA can be realistically simulated from fully sampled
RGB ground truth images. The remaining obstacle is searching for full-color RGB raw
images that are appropriate for use as ground-truth data, given that the majority of
current cameras use a color filter array. Therefore, we will initially assess existing datasets
with regard to their suitability as ground truth data and decide on the PixelShift200 image
dataset.

4.1.1. Choosing PixelShift200 from Existing Image Datasets

In this section, four image sets are discussed that are commonly used in the context of
demosaicing: the Kodak, Arri, PixelShift200, and the Moiré image set. While the first
two of them turn out to be most suitable for benchmarking, the latter two are specifically
designed for training neural networks. After an overview of the image sets, PixelShift200
will be argued to be most suitable for building the training set for this thesis.
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The Kodak Image Set

The Kodak image set, which was released back in 1991, consists of 24 analog photos that
are scanned from negatives and provided as 8bit sRGB. These images have been fully RGB
sampled without introducing demosaicing artifacts, since analog cameras do not involve a
CFA. The original Kodak image set existed in a "Full Detail" resolution of 3072 × 2048
pixels, today, researchers mainly use the downsized "TV-comparable" version of the set
with a resolution of 768 × 512 pixels to benchmark image compression and demosaicing
against legacy algorithms (Andriani et al., 2013).
However, none of the variants is optimally suited for training a CNN because the spatial
frequency characteristics as well as the color representation of analog film and the involved
scanning process may differ from digital sensors and raw image processing pipelines.
Another limitation of the Kodak image set is the small number of images included in the
set, which may not sufficiently capture the wide array of digital photography. This would
however be beneficial for accurate inference by a CNN. Therefore, it can be concluded that
although the Kodak image set is a recognized benchmark, it does not satisfy the training
pipeline requirements of this thesis.

The Arri Image Set

The Arri image set, published by Andriani et al. (2013), was created as an up-to-date
response to the Kodak image set. It will be covered in more detail here as it was utilized
in the experiments of Backes and Fröhlich (2020), which this thesis is based on. The set
consists of twelve images, as depicted in Figure 19, which are individual frames extracted
from video footage captured with an Arri Alexa cinematic camera. The images preserve a
high dynamic range and are provided in a raw 16bit-TIFF format.
The last one of the twelve images (see Figure 19) uses a special modified camera body
that does not have color filters on the sensor at all. The image is captured using a color
filter wheel in front of the camera lens to capture the red, green and blue channel of
an image separately. These are combined to a high resolution fully sampled raw image
which is optimal for the purpose of simulating other color filter arrays. The results of
the color-wheel-technique are comparable to the images from the PixelShift200 database
described later.
However, the other eleven images from the set are shot with an Arri Alexa cinematic
camera that uses a normal Bayer sensor, which means that the raw images are not fully
RGB subsampled, but only capture either the red, green, or blue light intensity per pixel.
This kind of raw Bayer images could only be used in this thesis if a preprocessing step is
applied: Backes and Fröhlich (2020) show that raw image data from a Bayer sensor can
be used to simulate other CFA patterns by first demosaicing and downscaling the original
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Figure 19: Overview of the Arri image set. Adapted from Andriani et al., 2013

raw image data to get a fully sampled RGB ground truth image. However, this workflow
seems suboptimal in comparison to the full RGB raw image data from the color-wheel or
the PixelShift technology.
In the work of Backes and Fröhlich (2020), this image set was used to benchmark their
demosaicing algorithm (dFSR) on different pseudo-random CFA patterns. Since this thesis
builds on the CFA patterns from their research, one could argue for the use of this image
set to allow a direct comparison. However, for tasks such as image classification networks,
typically large datasets of images, such as ImageNet (Deng et al., 2009), are used. These
datasets are compiled from various internet sources to cover a wide range of subjects,
locations, times of day, and camera models. In this context, using only twelve images from
the Arri dataset may be insufficient for learning demosaicing and lead to poorer inference
when the network is presented with real camera data. Although multiple training samples
could be extracted from each of the twelve Arri images for a 256 × 256 pixel training
pipeline, the image material only covers a limited number of subjects overall. Additionally,
partitioning the dataset into images for training and validation further reduces the available
training data. Especially, if the aim is for the neural network to consider learned knowledge
about typical image content during image reconstruction, a larger variety of image subjects
would be beneficial.

The PixelShift200 Dataset

The PixelShift200 image dataset was designed by Qian et al. (2021) specifically for use
as training data for demosaicing and denoising CNNs. While their CNN architecture
"TENet" presented in conjunction with the data set is too much optimized for Bayer
sensors to be applicable in the context of this thesis, the PixelShift200 image set is suitable
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for simulating any CFAs since it consists of fully sampled raw RGB data acquired using
PixelShift technology. The set comprises 200 training and 10 validation images in 4K
resolution. A selection of the images is previewed in Figure 20.

Figure 20: Overview of the PixelShift200 image set (Qian et al., 2021): Preview of random
20 of 200 training images (left) and all 10 validation images (right)

The pictures of the dataset were recorded with a SONY α7R III full frame camera. This
camera is equipped with a standard Bayer CFA but uses a sensor shifting technology to
capture a fully sampled RGB image. Four images are taken shortly after each other, with
the camera’s Bayer sensor shifted horizontally or vertically by one pixel for each image.
Across the four shots, each pixel is sampled once by each of the four Bayer quadrants –
red, green, green and blue. How the four separate images can be combined into a fully
sampled RGB image is shown in Figure 21.
The fully sampled RGB PixelShift images can be used to simulate any CFA pattern
without prior debayering or downscaling of the raw images as required with the Arri image
set. This eliminates the risk of introducing artifacts into the training data. PixelShift
images can be used for simulation at full 1:1 pixel resolution, preserving the original sensor
characteristics. Provided that the sensor shift mechanism moves accurately by one pixel,
the CFA simulation should be very close to a camera that actually has the CFA pattern
physically implemented.
PixelShift technology can produce artifacts when capturing moving subjects due to its
temporally distributed capturing process. It appears that the PixelShift200 dataset
avoids including subjects with motion. Considering that moving subjects, longer exposure
times, and motion blur are inherent aspects of photography, it would be advantageous
to incorporate such images into the training data. Because the images are otherwise
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Figure 21: An exemplary 2 × 2 pixel image area gets fully sampled with PixelShift Tech-
nology. The camera’s Bayer sensor is shifted horizontally and vertically while
the camera takes four images so every pixel position is captured with a red-,
green- and a blue-pass filter. (Own illustration inspired by Qian et al., 2021,
Fig. 4)

well-suited for CFA simulation, this drawback is being accepted.
The images have very low noise levels. If these images were used to train a denoiser, the
noise would have to be simulated. However, since this thesis does not address denoising,
the PixelShift200 dataset remains a reasonable choice.

The Moiré Dataset

Lastly, even though not applied in this thesis, the Moiré image set shall be at least
mentioned here, as it is based on an idea that could still be relevant to this thesis.
While the other image sets are manually compiled by capturing or collecting images, the
Moiré dataset relies on a data-driven approach to collect image patches that are prone
to producing aliasing effects like moiré or zipper artifacts during demosaicing. To build
the Moiré dataset, images from various internet sources where first resampled with the
Bayer pattern and then reconstructed with a demosaicing CNN. The parts, where the
reconstruction differs most from the original images, were extracted to form the Moiré
image set. Using this dataset to train a demosaicing CNN is equivalent to re-weighting
the loss function towards challenging structures. (Gharbi et al., 2016)
While the Moiré dataset is an interesting concept, it was not applied in this thesis, as the
patches are selected with the Bayer pattern in mind. When reconstructing images from
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non-regular sampling patterns, different kind of image structures may be challenging to
reconstruct. Further investigations would be needed to verify that training would benefit
from the Moiré image set in our case. It could then also be used to fine-tune a model
pretrained with PixelShift200.

4.1.2. Image Preparation and Data Augmentation

As shown in Figure 22 on the left, the PixelShift200 image set is first extracted form the
RAW images by using the original code provided by the authors. After that, five 512 × 512
pixel crops are extracted from each original 4K PixelShift200 image, as explained in on the
right side of Figure 22. These crops are then stored as 16bit .tif-files. Figure 23 visualizes,
how the cropping operation works geometrically.
As shown in Figure 24, inside the PyTorch Dataloader, different random batches of images
are selected for each epoch of training, while a fixed batch order is used for validation. The
image batches are converted to PyTorch floating point tensors, before they are linearly
downscaled by factor 2. The geometric augmentation consists of a random rotation, that
is only applied during training. After augmentation, the CFA is simulated, by multiplying
the image with the RGB pattern mask. The resulting training and validation inputs and
ground truth targets have a resolution of 256 × 256 pixels. The training set comprises
1000 image samples, while the validation comprises 50.
Although the fully sampled PixelShift200 images allow for sensor simulation at full 1:1
pixel resolution, a factor 2 downscale is applied, as shown in Figure 22. The reason for
this decision is that the PixelShift200 images appear somewhat blurry at full resolution
compared to the Arri Image Set used in Backes (2019). However, the primary challenge of
demosaicing is to reconstruct sharp details on a pixel scale as this is where undersampling
can lead to reconstruction artifacts such as Moiré or aliasing. The downscaling increases
the difficulty of the training set in this regard. This allows a proper judgement of the
actual reconstruction performance and brings it closer to the Arri Image Set. Another
issue resolved with the downsampling is that a small amount of the PixelShift200 images
contain zipper artifacts, as shown in Figure 25. These may originate either from the
camera being moved during exposure or from the sensor shifting mechanism not working

Preprocessing Steps Provided by PixelShift200 Authors
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Figure 22: Building a training and validation set from the PixelShift200 image dataset
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Figure 23: Extracting 5 crops per PixelShift200 image

Dynamic Image Processing inside the PyTorch Dataloader
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Figure 24: Dynamic image processing inside the PyTorch DataLoader. The figure shows
how a batch of mosaic sensor images and their corresponding ground truth is
loaded during training (blue) and validation phase (red).
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Figure 25: PixelShift: Moving objects cause Bayer artifacts. Training image no. 177 (left)
has Bayer artifacts visible in the magnified extract (center). These are resolved
by factor 2 linear downsampling (right).

acurately.
The color space utilized in the training image set impacts the evaluation metrics SSIM,
MS-SSIM, and PSNR, as well as the loss function. Due to the nonlinear properties of
Gamma 2.2, training and evaluation in sRGB gives more weight to the darker intensity
values than to the lighter ones, which corresponds to human perception. While the authors
of SSIM do not define a specific input color space for the metric, they also employ sRGB
encoded images in their examples (see Nilsson and Akenine-Möller, 2020). Preliminary
testing also indicated that the range of values of uncorrected RAW images varies greatly,
and that the reconstruction errors are weighted differently by the loss function depending
on the brightness of the image. In contrast, the sRGB color space, in combination with
the previous processing steps of the RAW pipeline (white balance, brightness and contrast
adjustment), acts as a normalization of the training data, which is advantageous for training.
For this reason, sRGB was chosen as the color domain for training the demosaicing models
in this thesis.
The training data is augmented with a random geometric transform that varies for
each epoch of training. The primary objective is to ensure transformation-invariant
reconstruction quality. For this purpose, random rotation is employed to allow the camera
to be oriented in any direction while maintaining the same reconstruction quality. Figure 26
previews how an original training image is transformed differently during four epochs
of training. The rotation operation uses mirrored border extension to fill the undefined
triangles that result from angles not divisible by 90 degrees. These geometric augmentations
contribute to a consistent comprehension of image structures across different non-regular
RGB sample constellations. As the CFA remains fixed during training, the random
transformation of the underlying ground truth images results in raw image simulations
that are differently sampled. This can effectively prevent overfitting and improve the
generalization of the trained model.
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Figure 26: Dynamic geometric augmentation inside the DataLoader: An original 512 × 512
pixel training sample (left) and four examples of randomly rotation and factor
2 linear downsampling (right).

4.1.3. Choosing Gauss and RandomQuarter as CFA

As mentioned in Subsection 2.2.2, Backes (2019) has investigated different methods to
construct the optimal pseudo-stochastic CFA, as shown in Figure 27, and provides the
code of the pattern generators implemented in MATLAB. This serves as a starting point
for generating the CFA for this thesis. Since the RandomQuarter and the Gauss patterns
gave promising results in their experiments, this pattern is chosen for the training of the
CNNs.
The RandomQuarter sampling pattern can be obtained by randomly mutating every
two-by-two pixel block of the Bayer pattern, while the Gauss pattern is generated by
placing single pixels iteratively onto an empty frame using a random gauss distribution.
The algorithm will be further discussed in Subsection 4.4.4. In accordance with the Bayer
pattern, both RandomQuarter and Gauss contain twice as many green samples, resulting
in 25% red, 50% green, and 25% blue to account for the human eye’s higher sensitivity to
green light.

Figure 27: RGB RandomQuarter and Gauss50 Sampling Patterns. Adapted from Backes
and Fröhlich, 2020
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4.1.4. Simulating Mosaic Sensor Images (CNN Inputs)

As mentioned earlier, when training the CNN with supervised learning a set of labelled
data is needed. In case of demosaicing, this means pairs of mosaic sensor input images and
their corresponding desired optimal fully sampled RGB outputs. Following the Backes
(2019) approach, a set of fully sampled RGB images is first assembled to serve as true
labels during training and as ground truth for the simulated mosaic sensor images.
While demosaicing is a difficult task, simulating a mosaic sensor image from the RGB
ground truth is as simple as masking the corresponding pixel positions by the color
channels of the CFA-Pattern. This can be achieved by the following element-wise matrix
multiplication

IsensSim = Igt × Mcfa, (4.1)

with Igt ∈ R3×H×W being the fully sampled RGB ground truth image and Mcfa ∈
{0, 1}3×H×W being the CFA mask image. The resulting mosaic sensor image IsensSim ∈
R3×H×W still has three RGB-channels with only one of the colors defined per pixel and
the others being zero. It can also be flattened to a single channel image by reducing the
channel dimension with a sum operation.
As today’s digital cameras involve a (Bayer-) color filter array, most image datasets
provided by the science community are actually demosaiced with some kind of debayering
algorithm. Raw images demosaiced with another debayering algorithm are not appropriate
ground truth images as they include just the artifacts that we aim to prevent. The
PixelShift technology, as discussed in Subsection 4.1.1, however, provides a good way to
recomposite a fully sampled RGB raw image from four raw Bayer images without involving
debayering.

4.2. Setup and Implementation of the Convolutional Neural
Networks

4.2.1. From UNet to SANet Architecture

Throughout this thesis, different CNN architectures are tested using the training pipeline
described above. These include a simple UNet, roughly based on Ronneberger et al. (2015),
and the RDUnet which relies on the code provided by Gurrola-Ramos et al. (2021). In
addition an own idea of an Adaptive Pattern Interpolation Net (APINet) is prototyped.
However, it was only with the SANet architecture that the reconstruction quality met
expectations. Therefore, the focus of this thesis is on the customization of the SANet
architecture for the reconstruction of irregularly sampled images. However, the experiments
with UNet and APINet are referenced at various points for comparison. The architecture
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of both models is provided in the appendix.
The PyTorch training loop is initially setup with the help of the guide by Aladdin Persson
(2021), which is then extended to allow model switching and evaluation of the desired
metrics. The TensorBoard plugin (“TensorBoard”, 2017, May 15/2023) aids in organizing
and visualizing the different training runs. A customized logger is implemented to preview
the reconstructed validation images, export the model state, and log the evaluation metrics
of each training in a JSON file.
For the experiments involving the SANet architecture, specific components of the authors’
official PyTorch implementation (T. Zhang, 2022, October 2/2023) are used, including the
spatially adaptive convolution modules and the SANet model, but not the training loop or
data loaders. All locations where foreign code is used are documented in the source code.

4.2.2. The Appropriate Output Activation Function for Image Reconstruction

The activation function of the last layer should be chosen separately from the inner layers
and the output layer of a CNN, as it limits and shapes the values that can be output.
For image processing task mostly ReLu Activation and it’s derivates PReLu, LeakyReLu
are used to prevent the problem of vanishing gradients (cf. Kumar et al., 2023; Zhou
et al., 2018). However, at first glance, Sigmoid activation seems to be a good fit for image
reconstruction as well (Eisemann et al., 2020, cf.). Mainly designed for classification
probabilities, it ensures that the output image values are floating point values between 0
and 1, which can be mapped to the minimal and maximal values of the desired output
image format. However, sigmoid was not used as output activation for the following
reason: The brightness values of the image reconstruction (CNN output) should remain
the same compared to the mosaic sensor image (CNN input). The nonlinearity of the
Sigmoid function forces the CNN to generate the output in an inverse Sigmoid domain
during training. During initial training experiments with a Sigmoid activation function,
the UNet fails to accurately compensate for the s-shape of the Sigmoid activation: Image
regions that are nearly black in the input turn out brighter in the reconstruction, with
correspondingly worse loss values. A simple ReLu activation seems to be the more obvious
choice for the output layer because of its linearity.
The net will then learn through training to output pixel values between 0 and 1, but
might predict values outside this range. Therefore, an additional clamping operation is
applied to the CNNs output just before saving the reconstruction to an image file and
before measuring PSNR and SSIM. No clamping is applied before the loss-function during
training to not disturb the back propagation process.
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4.2.3. Choosing Ll2 Loss Function for Image Reconstruction

Two commonly used loss functions in image reconstruction nets are Ll1 and Ll2 loss. Ll2

loss is also referred to as mean squared error (MSE) or Euclidean loss (see Khan et al.,
2018, p. 67). It is utilized as a loss function for demosaicing e.g. in Cui et al. (2021),
Gharbi et al. (2016), Qian et al. (2021), and Syu et al. (2018). Ll2 is closely connected to
the peak signal to noise ratio (PSNR) metric described in Subsection 4.3.1
The Ll1 loss is the mean absolute error, which is also employed for demosaicing, as seen
in T. Zhang et al. (2022). According to a study on various loss functions by Zhao et al.
(2018), the Ll1 loss performs better in image restoration compared to the Ll1 loss function
because of it’s stronger correlation with human-perceived image quality. For this reason,
Ll1 was selected for the experiments carried out in this thesis.
To measure the error of the predicted Image Ipred ∈ RC×H×W , Ll1 loss can be computed
with

Ll1(Ipred, Igt) = 1
C · H · W

C−1∑︂
c=0

H−1∑︂
j=0

W −1∑︂
i=0

|Ipred [c, j, i] − Igt [c, j, i]| . (4.2)

The summed absolute pixel error is normalized with the total number of pixels H · W · C

across all image channels, with C = 3 for an RGB color image.
For achieving better perceived reconstruction quality of detailed structures, a mixed loss
function consisting of Multiscale structural similarity index measure (MS-SSIM), Structural
similarity index measure (SSIM), and Ll1 loss is proposed by Zhao et al. (2018). However,
initial efforts to use various PyTorch implementations of this mixed loss function did not
bring the desired success: The duration of a training epoch was four times longer than
with Ll1 . Focussing on the research questions, it appeared more beneficial to stick to the
simpler Ll1 loss for training and keep SSIM and MS-SSIM only as separate metrics for
independent evaluation of the results, as described in Section 4.3.

4.2.4. Input Layer Adjustments for Processing Image and Pattern Information

The mosaic sensor image is a single channel, grayscale image holding spatially encoded
color values. Passing this directly into the network during the training of the network
would involve guessing the locations of the red, green and blue pixels. While this is
theoretically possible it would not make sense to complicate training to learn something
that is already known. It would be unnecessary to let the network learn the positional
color encoding of the mosaic sensor image by itself as the design of the CFA is a known
parameter. For sake of efficiency all relevant prior knowledge should be provided to the
network as an input.
Therefore, the mosaic sensor image pixels are separated into a three-channeled RGB image
first. As each pixel position only has a single value for either red, green or blue, the other
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color channels contain zeroes where there is no information.
While this input format is already an improvement in contrast to the raw image, it
introduces a new ambiguity: A channel value of zero could be either an extremely dark
color value or denoting a missing pixel in this encoding.
To avoid this ambiguity, the pattern information is input as a dedicated three-channeled
bit mask. The channels correspond to the three colors red, green and blue and each bit
denotes if there is information on this pixel (value of one) or not (value of zero). T. Zhang
et al. (2022) make use of the exact same input format. Providing the CFA as an additional
input also allows processing the pattern information in a separate chain inside the network
like with the SANet architecture (see Subsection 3.3.4).

4.2.5. Separate Experiments for Single- vs. Multi-Channel Reconstruction

In order to find out how the different architectures are able to leverage inter-channel
correlations the training and evaluation is repeated in three different setups: g→g, rgb→g

and rgb→rgb.
In the first setup the problem is simplified to only reconstructing a single color channel
from its available green color samples. This stage will be called g→g. The green channel
was chosen as it has the double amount of samples: It only lacks fifty percent of the pixel
data whereas red and green channel lack 75% of their pixel data in the CFA patterns used
in this thesis.
The second setup will be referred to as rgb→g where still only the green channel gets
reconstructed but the red and blue channels are fed into the CNN as well giving additional
context. It is assumed that the reconstruction quality will improve if the CNN learns
how to extract cross-channel correlations from the other channels to contribute to the
estimation of the missing pixel values in the green channel.
The third setup rgb→rgb is to reconstruct the full rgb channels from the rgb input.
With regard to their architecture of the networks, the three setups differ mainly in the
number of input and output features. The number of input feature maps equals twice the
number of color channels entered. Each color channel corresponds to two input feature
maps – one for the actual image data and one for the CFA mask of this channel. Therefore,
g→g has two input feature maps while rgb→g and rgb→rgb both have six input feature
maps.

4.3. Reconstruction Quality and Model Complexity Metrics

To evaluate the quality of demosaicing, the reconstructed image is compared to the ground
truth target utilizing the image comparison metrics PSNR, SSIM, and MS-SSIM. Model
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complexity is judged by the number of trainable parameters. This section provides a brief
explanation of these metrics.

4.3.1. Peak Signal to Noise Ratio (PSNR)

The PSNR between the predicted Image Ipred ∈ RC×H×W , and the ground truth image
Igt ∈ RC×H×W can be defined as

qP SNR = 10 log10

(︄
maxval2

MSE

)︄
, (4.3)

where mean squared error (MSE) is computed with

qMSE(Ipred, Igt) = 1
C · H · W

C−1∑︂
c=0

H−1∑︂
y=0

W −1∑︂
x=0

(︁
Ipred [c, y, x] − Igt [c, y, x]

)︁2. (4.4)

(see Kumar et al., 2023)
In our case, maxval is = 1.0, since that corresponds to the maximal possible pixel intensity
value. Clipping is applied before computing the evaluation metrics, as mentioned in
Subsection 4.2.2.
PSNR values are measured on a decibel scale, where higher values indicate higher quality
image reconstruction.

4.3.2. Structural Image Comparison with SSIM & MS-SSIM

The structural similarity index measure (SSIM) metric is used in thousands of research
papers to objectively compare image quality. It aims to be closely related to human image
perception and takes into account the luminance, contrast, and structure of the images
when comparing two images (see Nilsson and Akenine-Möller, 2020). Comparable to
PSNR, the overall quality score of two images is determined by averaging the SSIM scores
computed for every individual pixel position. However, SSIM also considers the neighboring
pixels by internally applying an 11 × 11 pixel Gaussian filter kernel with σ = 1.5 within
the components. For a full definition of SSIM, refer to Nilsson and Akenine-Möller (2020).
The multiscale structural similarity index measure (MS-SSIM) extends SSIM by accounting
for various levels of detail. Although SSIM permits adjusting parameters to emphasize
different levels of detail, MS-SSIM, in conjunction with the standard scaling weights
presented by Wang et al. (2003), seems to be a ready-made solution for many applications.
MS-SSIM provides a comprehensive assessment of the perceived quality of the reconstruc-
tion by integrating SSIM at multiple levels of detail (see Nilsson and Akenine-Möller,
2020). Both SSIM and MS-SSIM yield scores that range from 0 (lowest similarity) to 1
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(highest similarity).
For the experiments in this thesis the MS-SSIM implementation from the Python piqa
package was used together with the default scale weights described by Wang et al. (2003).

4.3.3. Number of Trained Parameters

The total number of trained parameters provides an estimate of the neural network’s
complexity. A greater quantity of parameters suggests a more computationally demanding
training process. It also indicates that more floating-point operations may be involved in
the forward pass, which means that the CNN will require more hardware resources during
inference or that reconstruction will take longer.

4.4. Training and Optimization of the SANet Architecture

This section describes various optimizations to the training pipeline and the architecture
of the SANet. Here, the training performance will be assessed only by the validation loss,
while the Chapter 5 will focus on image quality comparision using PSNR and MS-SSIM.

4.4.1. Increasing the Size of the Training Set

Experiments were performed with two different sizes of the data set. Since the images
used for training are small extracts from the original PixelShift200 images, the size of the
data set can be increased by the number of extracts. For the smaller training set, only
one cropped area from the center of each of the original 200 images was used. For the
larger one, five clippings were extracted from each image: One from the center and four
from the corners. Here, the resulting size is 5 · 200 = 1000 training images. In both cases,
the same augmentations were applied. The validation set was always left at five crops per
image to allow comparison. It consists of 50 images.
As it can be seen in Figure 28, the larger size leads to a much faster convergence per epoch.
However, it has to be taken into account that epochs become longer as the number of
weight updates increases with the size of the dataset. Therefore, Figure 29 compares the
loss per elapsed training time. After compensating for the different epoch length there is
no significant difference between the larger and the smaller training set.
A possible explanation could be that demosaicing is more about the very basic image
features like gradients, edges or basic shapes at the scale of a few pixels, as this is where
the undersampling errors occur. This could mean that the relevant features were already
sufficiently represented in the smaller training set. Also, the geometric augmentation
inside the train DataLoader could influence the result, as it already enhances the training
data. It was however applied in both training runs.
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Figure 28: Validation loss per epoch for SANet with large training set and small training
set

Figure 29: Validation loss per training time for SANet with large trainingset and small
trainingset
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To find out the optimal size of the image data set, ideally a series of training runs would
be conducted with e.g. linearly increasing size of the data set. Plotting the validation loss
against the size of the data set could reveil if there exists an optimal size and how much
the dataset size can be reduced without decrease of reconstruction performance.

4.4.2. Learning Rate Decay

The original SANet implementation (T. Zhang, 2022, October 2/2023) use a global learning
rate multiplier to employ a learning rate warmup and decay scheduled by the training
epoch. Figure 30 shows, that the maximum learning rate of 1 · 10−4 is reached after three
epochs of warmup. From then, a learning rate decay is achieved by a cosine annealing
function. The warmup is probably intended to prevent overshooting in the initial epochs,
while the decay is probably intended to allow the backpropagation descend into smaller
minima to achieve a better model fit.
To evaluate the effect of the scheduled learning rate multiplier, the validation loss per
epoch is compared for two models of SANet, as shown in Figure 31. One is trained with
scheduled learning rate (green) and the other one is trained with a constant learning rate
of 1 · 10−4 (orange). The constant learning rate acheived better results in the validation
loss. The same difference shows in the metrics PSNR and MS-SSIM.
The Adam stochastic gradient descent optimizer used in the experiments already dy-
namically adjusts the learning rate based on gradient updates (Kingma and Ba, 2017).
Therefore, it could be argued, that an additional learning rate multiplier redundant.
However, according to Loshchilov and Hutter (2019), an additional global learning rate
multiplier, scheduled by the epoch, such as cosine annealing, can improve the training
success of the Adam algorithm even further. It is however usually implemented as a
periodic function that alternates between higher and lower learning rates during training.
In this context it would be interesting to spend more investigations on learning rate
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Figure 30: Scheduled Learning Rate Multiplicator
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Figure 31: Constant vs. scheduled learning rate multiplier

schedulers and e.g repeat the experiments with an iterative learning rate decay and cosine
annealing.

4.4.3. Sparse Residual- and Difference-Learning

The SANet architecture uses global residual learning to increase the efficiency of training or
the quality of reconstruction: In a separate branch, a single spatially adaptive convolutional
layer is applied to the mosaic input to produce an initial rough full RGB reconstruction
(cf. T. Zhang et al., 2022). Adding this to the output of the UNet means that the
UNet is trained to predict only the difference between the ground truth and this partial
reconstruction. However, the fact that a single adaptive convolution layer can perform
a coarse debayering task seems to be true only for the Bayer-CFA for which SANet was
originally developed. For irregular patterns such as the random quarter or Gaussian
patterns of Backes and Fröhlich (2020), a single adaptive convolution layer seems not
able to get a clear separation of the RGB channels. While this original global residual
learning design of T. Zhang et al. (2022) still performs better than without residuals, the
following experiments show that the reconstruction result can be greatly improved with
an alternative residual branch tailored to the nature of irregular CFAs.
As a replacement for the global residual method by T. Zhang et al. (2022), this thesis
proposes an alternative residual branch consisting of a CFA-dependent Gaussian filter
that works better on irregularly sampled sensor data. Its basic idea is to close the gaps
of missing pixel values in the color channels by applying a Gaussian blur filter per color
channel. The smoothed result represents a rough reconstruction of the image, which is
to be refined by the Encoder-Decoder structure of the SANet. To prevent variations in
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cfa cfa ∗K

groundTruth sensImg sensImg ∗K sensImg∗K
cfa∗K

Figure 32: CFA-normalized convolution as residual branch

sample density from affecting the result as local brightness variations, a CFA-weighted
sample-averaging is employed. It is achieved via pixel-by-pixel division by the CFA filtered
with the same kernel.
A kernel size of 7 × 7 pixels was chosen, since this corresponds to the maximum sample
distance in the stochastic Gaussian CFA. In this way, during convolution, it is ensured
that for each kernel position within the receptive field, at least one sample of each channel
occurs. This avoids undefined pixel values (holes) in the output, which lead to problems
with the described CFA-dependent normalization method (divide by zero). The Gaussian
filter kernel is generated with the function ‘transforms.functional.gaussian_blur’ from the
torchvision package and set as static, meaning it is not part of the trainable weights of
the CNN. The standard deviation σ of the Gaussian distribution is set to 1.0, keeping
the blur effect at a minimum. The neighboring pixels of the central pixel in the receptive
field have only a minor impact on the convolution output. However, when there are no
nearby samples, more distant neighbors receive more weight due to the CFA-dependent
normalization process.
The result IO ∈ RH×W of the simple convolution II ∗ H without normalization can now
be described as

IO [u, v] =
K−1∑︂
i=0

K−1∑︂
j=0

II [u + i, v + j] · H [i, j] , (4.5)

where the convolution kernel of size K × K is defined as H ∈ RK×K . This kernel is applied
to the input I ∈ RH×W in a sliding window. (cf. Burger and Burge, 2022, p. 96)
In order to preserve the brightness of the original image after applying a convolution filter,
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the result is typically divided by the sum of the kernel, or a normalized kernel with sum
= 1 is used in the first place. When dealing with irregularly sampled color channels a
spatially adaptive normalization per pixel is required, as the total weight of the kernel at
convolution depends on the available samples in the CFA depending on the position.
However, for irregularly sampled color channels, normalization must be spatially adaptive
per pixel, since the total weight of the kernel at convolution depends on the particular
sample constellation within the sliding window. This type of Gaussian-weighted averaging
avoids local accumulations of samples manifesting as brightness variation artifacts in the
resulting image.
The effective total weight of the kernel for each pixel position can be calculated efficiently
by applying the same convolution to the CFA bit-mask of a color channel.
The result IO

c [p] of a spatially normalized convolution of an image channel c of the sensor
image sensImg ∈ RH×W ×C and the CFA bit-mask CFAmask ∈ {0, 1}H×W ×C with the
fixed kernel H can be described as

IO
c [p] =

∑︁K−1
i=0

∑︁K−1
j=0 sensImgc [u + i, v + j] · H [i, j]∑︁K−1

i=0
∑︁K−1

j=0 CFAmaskc [u + i, v + j] · H [i, j]
. (4.6)

Figure 33 compares the validation loss per epoch of training for the original residual
branch (gray), no residual branch (green), and the alternative residual branch (orange).
The effectiveness of the alternative branch is clearly superior to the other two variants.
Especially during the first epochs of training it can be seen that convergence is much
faster. By utilizing the alternative residual, SANet reaches the same validation loss after
about 60 epochs, that the original residual branch reaches after 200 epochs of training.
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Figure 33: Validation loss of no residual branch (green), original residual branch (gray),
alternative residual branch (orange)

4.4.4. Using a Periodic Stochastic Gauss Pattern

The idea for this optimization is, that the full 256 × 256 pixel stochastically generated
Gauss kernel is harder to demosaic for SANet than a smaller 32 × 32 pixel Gauss kernel
that is repeated to fill the 256 × 256 image. In this section, the Gauss pattern generation
algorithm is first adjusted to produce a seamlessly tileable subpattern. Then the SANet is
trained with both variants to evaluate the impact on the reconstruction performance.
In the implementation by Backes (2019), smaller Gauss CFA pattern of 128 × 128 pixels
was generated because the iterative generation process takes very long. The generated
128 × 128 pattern was then repeated in x and y direction to fill the simulated image size
256 × 256 pixels of their experiments. In regard of the image size of actual image sensors
and the manufacturing process it makes sense to have a repeated CFA pattern at this
larger scale.
However, the pattern generation code by Backes (2019) does not take seamless tileability
of the pattern into account, as the Gaussian probability distribution constraint does not
wrap around the edges. This leads to clearly visible accumulation of same colored samples
at the seams of the adjacent tile borders, as shown in Figure 34 on the left.
For generating the Gauss sampling, Backes (2019, p. 34) places new color samples
iteratively on an empty grid until every pixel position is filled. He uses a (pseudo-)distance
function,

d = (x − xi)2 + (y − yi)2

4 , (4.7)

to calculate how far a new color sample position is away from all existing same-colored
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Figure 34: Tiled examples of generated 32 × 32 RGB Gauss patterns. With the original
implementation by Backes (2019) (left), the horizontal and vertical seams stand
out because of their inhomogeneous distribution. The proposed modification
(right) ensures an even distribution across the seams at 32 pixels (Please zoom
in for a pixel-perfect view).

samples. The distance function is part of a Gaussian probability distribution, that
influences the placement of the next color sample.
To receive a seamlessly tileable CFA pattern, the distance function was altered to

d = min (|x − xi| , w − |x − xi|)2 + min (|y − yi| , h − |y − yi|)2

4 . (4.8)

For this, the original MATLAB implementation was ported to Python. Figure 34 shows
two examples of a 32 × 32 pixel Gauss pattern both repeated in x- and y-direction to cover
a 64 × 64 CFA. On the left, the original algorithm implemented by Backes (2019) leads to
non-uniform clustering of same-colored samples at the borders, visible as horizontal and
vertical seams at positions 32. In addition, the border regions of the tile seem to deviate
from the desired proportions of 50% green, 25% red, and 25% blue pixels. They tend to
have fewer green pixels. In the right image, thanks to a modified distance function, no
seams are visible between the repeated tiles, as the Gaussian distribution wraps around
the edges.
Figure 35 shows that the 32 × 32 pixel periodic Gauss pattern perform leads to a smaller
validation loss (gray) than the full 256 × 256 Gauss pattern. This could be explained with
the reduced complexity of the sampling pattern, as it repeats many times to fill the image
size of 256 × 256. It can be assumed that the effect would be even greater for larger input
images.

51



4. Experimental Setup

Figure 35: SANet validation loss per training epoch for the original Gauss pattern (pink)
and the periodic Gauss32 seamless pattern
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5.1. Comparision of the Base Architectures

Architectures UNet SANet APINet
PSNR 34.55 40.20 34.77

MS-SSIM 0.9754 0.9954 0.9866
Params(M) 1926531 10783810 19779

Table 2: Full RGB reconstructions from UNet, SANet, and APINet (RandomQuarter CFA;
100 epochs of training)

5.1.1. Reconstruction Quality

Table 2 shows a comparison of three CNN base architectures investigated in this thesis.
As the goal of this comparison is to point out the most appropriate base architecture, they
are trained in their most basic form without further optimizations.
The comparison features the SANet architecture (see Subsection 3.3.4) before applying the
optimizations presented in this thesis. Secondly, a basic UNet architecture is listed, which
is included in the attachments of this thesis. Further, the APINet prototype is added to
the comparison, which was newly developed during this thesis. It can also be found in the
attachments. For this comparison, APINet is applied to the three channels independently
without further heuristical optimizations such as green difference reconstruction.
The differences of the MS-SSIM may not seem huge when considering the value range of
MS-SSIM, that is from 0 to 1. However, the difference is clearly visible in the reconstruction
images (see Figure 36). Given demosaicing is about the recovery of 66% missing pixel values
while 33% are already there, higher metric values don’t come as a surprise. Furthermore,
image structures, that are challenging to demosaic, only appear in parts of the images,
while huge parts of the images are easier to reconstruct, e.g. because they are blurred or
lack tiny structures. Therefore, MS-SSIM value differences above 0.9 are where the crucial
improvements in reconstruction quality take place.
The UNet model produces acceptable results for grayscale images. However, as shown in
Figure 36, in areas with minimal saturation, the red, green, and blue channels of an image
become identical, making demosaicing an easy task. The example of a saturated image
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Figure 36: Selected Reconstructions from UNet, SANet, and APINet

shows that the UNet does not separate the colors in the details sufficiently, resulting in a
coarse color noise that seems to be the sampling pattern manifested in the output.
APINet produces clear and highly detailed images at first glance. However, slight pixel
distortions and directed blurs at the pixel level, that are not noticeable in undefined or
blurred areas, lead to visible false colors in sharp boundaries and color transitions. This
can be explained with APINet not considering the image content, but only the sample
constellations for applying the interpolation filters.
The basic SANet model provides a much better reconstruction than APINet. This may
be thanks to the UNet shape it combines with spatially adaptive convolution, which
allows it to recognize structures even though they are masked by an irregular sampling
pattern. Nevertheless, the color separation and detail reconstruction of the original SANet
remain suboptimal. However, the modifications and optimizations presented in this thesis
significantly improve the demosaicing quality, which are summarized in Subsection 5.1.3.

5.1.2. Model Complexity

As shown in Table 2, SANet has five times the number of trainable parameters of the
simple UNet tested in this thesis, which can be justified by its significant quality advantage.
The very light APINet questions the suitability of the simple UNet model since it pro-
duces significantly better results with over one hundred times fewer trainable parameters.
Compared to SANet, it differs by a factor of a thousand. The memory consumption of the
forward pass was not measured. However, the difference in memory usage can be expected
to be somewhat smaller, since the Encoder-Decoder architecture of UNet and SANet
efficiently reduces the spatial feature resolution. On the other hand, APINet operates
with feature maps in full resolution, although only one layer deep.
APINet, described in Appendix A, could maybe be adopted in environments where
hardware resources are limited, like for in-camera preview. It could be further simplified

54



5. Results

for this purpose to allow real-time image processing.

5.1.3. Evaluate SANet Optimizations

Optimizations Cases
1 2 3

SANet ✓ ✓ ✓
Alternative Residual ✓ ✓ ✓

Tiled CFA ✓ ✓
Extra Long Training ✓

PSNR 40.03 40.56 42.04
MS_SSIM 0.9951 0.9960 0.9969

Trainable Parameters 10783131 10783131 10783131

Table 3: Performance of SANet with different optimizations applied.

As shown in Table 3 the optimizations enhance the performance of the SANet for demo-
saicing non-regularly sampled images.

5.1.4. RandomQuarter vs. Gauss vs. Periodic Gauss Pattern

Architectures RandomQuarter Gauss Gauss32 seamless
PSNR 40.71 40.03 40.56

MS-SSIM 0.9961 0.9951 0.9960
Params(M) 10783131 10783131 10783131

Table 4: Comparision of the CFA patterns RandomQuarter, Gauss and Gauss32 seamless
(SANet; 200 epochs of training).

Table 4 shows the SANet trained three times with only the CFA pattern changed. Ran-
domQuarter appears to perform best with SANet. As expected the periodic Gauss32
pattern is superior to the original Gauss pattern. It is also very close to RandomQuarter
when regarding MS-SSIM, but for the PSNR values the distance is greater in relation to
the original Gauss pattern.
The result could again be explained with the complexity of the patterns. RandomQuarter
consists of red-green-green-blue mutations in each 2×2 block. As there is a limited number
of such mutations, they recur many times in the CFA. This probably allows the SANet to
use the same filter for recurring subpatterns. Gaus32 recurs at a 32 × 32 pixel level thus is
more complex to process. The original Gauss pattern has the highest complexity and is
hardest to demosaic.
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5.2. Benchmarking SANet vs. dFSR

To benchmark the performance of the CNN architectures studied in this thesis, their
results are compared with the dFSR universal demosaicing algorithm. For this purpose,
the MATLAB code provided by Backes and Fröhlich (2020) is integrated into the PyTorch
training and evaluating pipeline implemented for this thesis. To be able to use the
same image loaders and evaluation metrics as for the other CNN models, a fake PyTorch
‘torch.nn.model’ class is created that calls the dFSR script from within it’s ‘model.forward()’
method using the MATLAB Engine for Python. Of course, this model is not actually
trainable as it is just a dummy to be able to use the same image loaders and evaluation
metrics as for the other CNN models.

5.2.1. Optimized SANet vs. dFSR

Metrics Cases
dFSR SANet

PSNR 41.38 42.04
MS_SSIM 0.9950 0.9969

Table 5: Optimized SANet vs. dFSR with periodic Gauss32 CFA. Evaluated using the
PixelShift200 validation set.

The optimized SANet manages to surpass the dFSR algorithm in both PSNR and MS-
SSIM, as indicated in ??. The periodic Gauss32 pattern is used.However, it has to be
pointed out, that these are the average metrics across all images in the validation set. The
next section shows that this holds not necessarily true for all validation images.

5.2.2. Comparison of PSNR and MS-SSIM per Image

Figure 37 shows the metrics PSNR and MS-SSIM per validation image for the best
optimized SANet model and the dFSR.
Figure 38 depicts selected validation image no. 14, 15, 06 from dFSR (left), SANet
(middle), Ground Truth (right). These images were selected, as they contain detailed
structures like letters as well as colored objects. By zooming in, subtle differences can
be seen. dFSR produces a sharper overall image impression, while it also produces false
colored blurred splashes at the white and black letters, as well as dark structures on
the orange. SANet produces an overall smoother output and much cleaner and sharper
letters- However at the chinese letter the edge from black to white appears a bit noisy.
One important difference is, that dFSR took about two minutes to reconstruct a single
256 × 256 pixel validation image, while SANet produces a batch of four in under a second
on a GTX 1050 Ti.
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Figure 37: dFSR vs. SANet seamless Gauss32 evaluation per image
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Figure 38: Comparision of the validation images no. 14, 15, 06 for dFSR (left), SANet
(middle), ground truth (right)
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5.2.3. Evaluate how Green Channel Benefits from the Other Channels

For this experiment, SANet is trained and evaluated twice to exclusively reconstruct the
green channel. First, only the green sensor samples are provided as input. For the second
model, the input comprises the complete red, green, and blue mosaic image samples.
Figure 39 demonstrates that the PSNR and MS-SSIM for the green channel improve
when incorporating red and blue sensor data. This demonstrates that the model utilizes
cross-channel correlations to improve the green channel, providing an advantage over
the dFSR algorithm, which only heuristically enhances the red and blue channels. It
is reasonable to assume that in SANet, the green sensor data also contributes to the
reconstruction of the red and blue channels.

59



5. Results

0 10 20 30 40

PSNR

g → g

rgb→ g

39.7538

40.9578

0.0 0.2 0.4 0.6 0.8 1.0

MS SSIM

g → g

rgb→ g

0.995063

0.99654

Figure 39: SANet vs. dFSR – Is the green channel by red and blue?
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6.1. Summary

This thesis combines the fields of RAW image processing and machine learning. Chapter 2
introduces technical details about digital camera sensors, RAW images, color filter arrays,
and demosaicing algorithms. Chapter 3 presents the necessary basis of convolutional
neural networks, including the concepts of convolution, supervised training, and network
architectures. The description of a supervised training pipeline’s setup and implementation
is presented in Chapter 4. An image training set is created by simulating mosaic sensor
images from the Pixelshift200 dataset. Different experiments are carried out, which cover
a straightforward UNet architecture, a personally designed APINet, and the spatially
adaptive SANet viewed as the most successful. As opposed to the basic UNet’s classical
convolution, spatially adaptive convolution is identified as being more appropriate for
non-uniform samples. Additionally, this thesis presents a new residual branch to improve
the demosaicing performance of the SANet on irregularly sampled images. Moreover, two
pseudorandom sampling patterns, Gauss and RandomQuarter, are investigated and a
seamless Gauss modification is shown to perform better with SANet. The final evaluation,
based on the validation images, indicates that the modified SANet CNN outperforms the
dFSR algorithm in terms of PSNR and MS-SSIM.

6.2. Concluding Remarks

The human eye contains day-vision receptors for red, green, and blue that are randomly
distributed across the retina. Neural networks were thought to be superior to traditional
algorithms in handling irregularly sampled image data due to their similarities with the
human brain. However, this assumption does not necessarily hold true for convolutional
neural networks. The convolutional layer as the fundamental building block of any CNN
takes advantage of the spatial uniformity of image data, which is lacking in irregularly
sampled image data. The experiments show that a UNet, which uses traditional convolution
with spatially consistent kernels, struggles to extract the color information from the irregular
mosaic image input and produce a homogeneous reconstruction. Only with the use of
spatially adaptive convolution could the experiments generate compelling image outputs
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from irregular sensor data.
The experiments with SANet, APINet, and CFA-normalized convolution represent only
first efforts to exploit the full potential of CNNs for demosaicing irregularly sampled
images. From this point, it might be worthwhile to conduct extensive literature research
on machine learning approaches for processing non-image irregularly sampled data that
may be applicable to the demosaicing problem.
Developing a CNN to fulfill a specific purpose generally can be approached in two different
ways, the pure deep learning and the manual approach:
The first one is trying to let the network deep-learn everything by itself, relying completely
on the principles of Supervised Learning and Back Propagation in order to adapt to the
data and provide the best possible solution. This approach can be argued to be superior
as it outsources the problem-solving completely to the machine. (An extreme example of
this could be the tendency to train multiple image-processing steps end-to-end in a single
CNN, as with Joint Denoising and Multi-Exposure-Fusion, Buades et al. (2022))
The manual approach would be to analyze the structure of the data in order to handcraft
prior knowledge into the architecture of the CNN to constrain and lead the deep learning
process into the right direction. This can be in form of custom data preprocessing,
separately supervised branches, custom weights. This approach resembles the development
of conventional procedural algorithms (e.g. traditional debayering algorithms or the
research by Backes and Fröhlich (2020)) and tends to require greater domain knowledge
and more human work.
However, in reality manual adjustments are often needed if the pure deep learning approach
does not produce satisfying results, as during the early experiments of this thesis. To
justify manual adjustments to the CNN architecture, one could also argue that even the
very generic UNet architecture contains certain constraints that rely on assumed data
characteristics: Convolution layers can be seen as optimized versions of fully connected
layers that exploit the prior knowledge of image data being spatially homogeneous. In our
case of irregularly sampled image data, this constraint enforced by spatially shared kernels
inside convolutional layers is hindering finding the right solution. This example shows
that modifications to the mechanics of a CNN may be justified by the characteristics of
the data, in order to achieve good convergence or to increase training efficiency.

6.3. Suggested Future Research

CFA-normalized convolution operation was presented in Subsection 4.4.3 and used with
a fixed Gaussian kernel to replace the global residual branch of the SANet. During the
work on this thesis experiments were done to transfer this concept into a Conv layer with
a trainable kernel. This Conv layer would have the same parameters as a classical conv
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layer, except that it would have additional input and output channels for the CFA just
like in Subsection 4.4.3. This would then allow to employ CFA-normed convolution inside
a UNet architecture similar to spatially adaptive convolution inside SANet. While this
idea could not be further developed during this thesis, it would be interesting to find out
how it could be implemented and if it performs better on irregularly sampled image data.
The pseudo-random CFA patterns used by Backes and Fröhlich (2020) contain two times
more green pixels than red or blue, derived from the Bayer pattern. However, Alleysson
et al. (2005) suggests that the Bayer pattern should be changed to have two times more
blue than red or green pixels to allow “[. . . ]estimating achromatic spatial acuity to higher
frequencies.” It could be interesting to examine whether other proportions of the colors in
the CFA would also lead to finer luminance details for pseudo-random CFAs. In this context
the works of Syu et al. (2018) and Henz et al. (2018) are interesting as they approach
the question of the optimal CFA with machine learning: They use a detachable Encoder-
Decoder architecture to develop the optimal color filter pattern and the corresponding
demosaicing method at the same time. The found CFA patterns interestingly consists of
color filters other than red, green, and blue.
In the experiments conducted during this thesis cropped and resized images of size 256×256
pixels were used. However, real raw images have resolutions of 4k to 8k pixels. While in
theory UNet should be able to handle different input resolutions, further research would
be needed to confirm that SANet implementation could handle the additional complexity
of larger images and the correspondingly larger random CFAs.
In regard of the SANet architecture (T. Zhang et al., 2022) memory consumption of
spatially adaptive convolution greatly increases with image size. This might make an
overlapping tiled image processing approach necessary as proposed by Ronneberger et al.
(2015) (see Figure 16).
Most CNN architectures for classic debayering, which also address noise reduction, add
synthetic noise on top of their clean training images (c.f. Gharbi et al., 2016; Qian et al.,
2021). Most of them use a simplified signal-independent white Gaussian noise which is
overlaid in an additive fashion. On the other side some research uses specially captured
pairs of noisy and clean images to gain more realistic training data (see T. Zhang et al.,
2022). Further research would be needed to find out how the CNN architectures examined
in this thesis perform on noisy image data in terms of noise reduction.
During this thesis it was discussed that demosaicing is most challenging when reconstructing
high frequency details, especially if they are strongly saturated. These structures can
interfere with the CFA patterns and create artifacts that are perceived as disturbing during
reconstruction. Gharbi et al. (2016) proposes an interesting approach to make training
more efficient by using a special dataset that contains mainly such challenging structures.
The Moiré Dataset published with the paper, contains image extracts that are particularly
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poorly reconstructable when sampled with the Bayer pattern (see subsubsection 4.1.1). It
would be interesting to investigate whether this set also provides more efficient training
and thus better reconstructions for demosaicing irregular CFAs or whether it would need
a dedicated set.
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Demosaicing of Bayer images
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be used to solve mathematical problems and work with matrices.
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Python

Programming language commonly used in data science and machine learning.

PyTorch

Python based machine learning framework, initially presented by Paszke et al., 2019.
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Appendix A.

Further Experiments with (Own) APINet
Architecture

During the course of this thesis, experimentation was conducted on a prototype CNN
model for adaptive pattern interpolation referred to as APINet. The basics of its design
will be explained here. APINet shares similarities with SANet as it also learns to adapt
to the CFA pattern, but in a much more constrained way. The basic APINet comprises
only two convolutional layers per image channel and does not utilize an Encoder-Decoder
architecture. However, it is mentioned here to showcase the limitations of spatially
consistent convolution in a traditional UNet, as it achieved better metrics after only a
few epochs of training compared to the simple UNet’s extended training. Additionally,
the APINet is computationally efficient, making it suitable for real-time preview purposes.
However, the design of the APINet only allows it to adapt to different sample constellations
and does not take the image content into account. It can be compared to the basic linear
debayering algorithm described in Subsection 2.2.1 as it applies specific interpolations for
different sample constellations.
Figure 40 illustrates the interpolation of a single color channel using a set of learned filter
kernels, weighted by features acquired from the sampling pattern. The most basic variant
of APINet reconstructs all three color channels independently. Alternatively, heuristic
optimizations known from traditional debayering algorithms can be applied to exploit
cross-channel correlations during reconstruction.



Appendix A. Further Experiments with (Own) APINet Architecture

Figure 40: Prototype of an Adaptive Pattern Interpolation Network (APINet): Recon-
struction of the red channel
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Appendix B.

Source Code Repository

The PyTorch implementation of the experiments conducted for this thesis is available at
https://gitlab.com/antonstoetzer/irregular-demosaicing-cnn.

https://gitlab.com/antonstoetzer/irregular-demosaicing-cnn
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