
Stuttgart Media University
Faculty Print and Media

Measuring Adoption of Phishing-Resistant
Authentication Methods on the Web

Master’s Thesis

submitted by
Martin Bock

in fulfillment of the
requirements for the degree of

Master of Science

Matriculation Number: 40822
Course of Studies: Computer Science and Media (M. Sc.)

First Examiner: Prof. Walter Kriha
Second Examiner: Benjamin Binder, M. Sc.

Date: June 30, 2023

Ehrenwörtliche Erklärung (German)
Hiermit versichere ich, Martin Bock, ehrenwörtlich, dass ich die vorliegende Masterarbeit mit
dem Titel: „Measuring Adoption of Phishing-Resistant Authentication Methods on the Web“
selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebenen Hilfsmittel
benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken
entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit
ist noch nicht veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden.

Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen Folgen
(§ 23 Abs. 2 Master-SPO (3 Semester) der HdM) einer unrichtigen oder unvollständigen ehren-
wörtlichen Versicherung zur Kenntnis genommen.

Stuttgart, 30. Juni 2023
Martin Bock

III

Abstract
Password-based authentication is widely used online, despite its numerous shortcomings, en-
abling attackers to take over users’ accounts. Phishing-resistant Fast IDentity Online (FIDO)
credentials have therefore been proposed to improve account security and authentication user
experience. With the recent introduction of FIDO-based passkeys, industry-leading corpora-
tions aim to drive widespread adoption of passwordless authentication to eliminate some of the
most common account takeover attacks their users are exposed to. This thesis presents the first
iteration of a distributed web crawler measuring the adoption of FIDO-based authentication
methods on the web to observe ongoing developments and assess the viability of the promised
passwordless future. The feasibility of automatically detecting authentication methods is in-
vestigated by analyzing crawled web content. Because today’s web is increasingly client-side
rendered, capturing relevant data with traditional scraping methods is challenging. Thus, the
traditional approach is compared to the browser-based crawling of dynamic content to optimize
the detection rate. The results show that authentication method detection is possible, although
there are some limitations regarding accuracy and coverage. Moreover, browser-based crawling
is found to significantly increase detection rate.

Keywords — FIDO, WebAuthn, Passkeys, Adoption, Authentication, Web Crawling

Kurzfassung (German)
Passwortbasierte Authentifizierung ist trotz ihrer zahlreichen Probleme im Web weit verbre-
itet. Viele dieser Probleme ermöglichen es Angreifern erst, Nutzerkonten zu übernehmen. Die
phishing-resistenten Fast IDentity Online (FIDO) Credentials wurden vorgeschlagen, um neue
Maßstäbe für die Sicherheit und Benutzerfreundlichkeit von Authentifizierung im Web zu setzen.
Mit der kürzlich erfolgten Vorstellung von FIDO-basierten Passkeys wollen branchenführende
Unternehmen den großflächigen Einsatz von passwortloser Authentifizierung vorantreiben, um
einige der häufigsten Angriffe zur Übernahme der Accounts ihrer Kunden zu unterbinden. Diese
Arbeit stellt die erste Iteration eines verteilten Web-Crawlers vor, der die Unterstützung von
FIDO-basierten Authentifizierungsmethoden im Web misst, um die Verbreitung zu beobachten
und die Realisierbarkeit einer versprochenen passwortlosen Zukunft zu bewerten. Durch die
Analyse der gecrawlten Inhalte wird die Machbarkeit der automatischen Erkennung von Authen-
tifizierungsmethoden untersucht. Da das heutige Web zunehmend clientseitig gerendert wird, ist
die Erfassung relevanter Daten mit herkömmlichen Scraping-Methoden eine Herausforderung.
Daher wird der traditionelle Ansatz mit dem browserbasierten Crawling von dynamischen Inhal-
ten verglichen, um die Erkennungsrate zu optimieren. Die Ergebnisse zeigen, dass die Erkennung
von Authentifizierungsmethoden möglich ist, auch wenn es einige Einschränkungen in Bezug
auf Genauigkeit und Abdeckung gibt. Darüber hinaus wird festgestellt, dass browserbasiertes
Crawling die Erkennungsrate signifikant erhöht.

V

Acknowledgements
First, I would like to express my gratitude to my advisors, Prof. Walter Kriha and Benjamin
Binder, for their guidance, support, and advocacy, especially when the state’s research and
education infrastructure provider abruptly reversed their approval of the project.

I would also like to thank my family and friends for their encouragement, support, and under-
standing when I couldn’t spend time with them. Thank you to Stephanie Jauss for proofreading,
but especially for taking on this memorable journey together and for always being there for me
during stressful times.

This thesis marks the end of my studies, which would not have been possible without my parents’
support. Thank you for believing in me and enabling me to pursue this path.

VII

Contents
Lists XI

List of Abbreviations . XI
List of Tables . XII
List of Figures . XII
List of Listings . XII

1. Introduction 1

2. Related Work 3
2.1. Means of Authentication . 3

2.1.1. Password-Based Authentication and Its Risks 3
2.1.2. Multi-Factor Authentication . 5
2.1.3. FIDO2 and WebAuthn Essentials . 8
2.1.4. Obstacles of FIDO2 Adoption . 13
2.1.5. Towards Phishing-Resistance . 15
2.1.6. Multi-Device FIDO Credentials . 16
2.1.7. Conditional Mediation . 18

2.2. Distributed Web Crawlers . 19
2.2.1. Use Cases . 19
2.2.2. Fundamentals . 20
2.2.3. Politeness Policies . 22
2.2.4. Building for Scale . 23
2.2.5. Crawling the Dynamic Web . 25

3. Architecture 27
3.1. Scope and Requirements . 27

3.1.1. Napkin Math . 28
3.2. Selecting System Components . 29

3.2.1. Queueing . 30
3.2.2. Data Storage . 30
3.2.3. Crawling . 31

3.3. Process Design . 31
3.3.1. Defining the Sequence of Operations . 32
3.3.2. Designing Data Structures . 32
3.3.3. Content Partitioning . 34

4. Implementation 35
4.1. Target Selection . 35

4.1.1. Comparing Domain Lists . 35
4.1.2. Handling Errors . 36
4.1.3. Ignoring HTTP-only . 36

4.2. Choosing a Software Stack . 37
4.2.1. Programming Languages . 37
4.2.2. Suitable Libraries . 38

4.3. Detection Methods . 38
4.3.1. Authentication URL Detection . 38
4.3.2. Authentication Method Detection . 40

VIII

4.4. Preliminary Experiments . 41
4.4.1. Unit Testing with Real Web Content . 41
4.4.2. Sitemap Authentication URL Extraction 42
4.4.3. Optimizing Chrome Crawling Performance 42

4.5. Avoiding Crawler Detection . 44

5. Deployment 47
5.1. Automated Deployment . 47
5.2. Monitoring . 48
5.3. Peculiarities of the Deployment Environment . 48

5.3.1. IPv6-Only Connectivity . 48
5.3.2. NAT64 Gateway . 49
5.3.3. Mesh Virtual Private Network . 50

5.4. Load Testing Components . 50
5.4.1. Cassandra . 51
5.4.2. RabbitMQ . 55

5.5. Infrastructure Optimizations . 57
5.5.1. Cassandra Optimizations . 57
5.5.2. Crawler Optimizations . 58

6. Results 61
6.1. Infrastructural Analysis . 61

6.1.1. IPv6 Adoption Rate . 61
6.1.2. System Load . 61

6.2. Quantitative Analysis . 71
6.2.1. Successful Connection Rate . 71
6.2.2. Discovered Content Distribution . 72
6.2.3. Authentication Method Detection . 73

6.3. Quantitative Validation of Matches . 75
6.3.1. Validation Datasets . 75
6.3.2. Comparing Matching Rule Effectiveness 76

6.4. Qualitative Analysis . 76
6.4.1. Undetected Sites . 76
6.4.2. Analyzing Matches . 81

7. Discussion 85
7.1. Limitations . 85

7.1.1. Inherent Detection Weaknesses . 85
7.1.2. False Negatives vs. False Positives . 87
7.1.3. True Positives vs. True Negatives . 87

7.2. Overcoming Hurdles . 88
7.2.1. Infrastructure . 88
7.2.2. Browsers and their Complexity . 89
7.2.3. Message Broker Complexity . 91
7.2.4. The Wild West of the Web . 92
7.2.5. Database Limitations . 93

IX

7.3. Unexpected Findings . 95
7.3.1. Extensive Link Collections . 95
7.3.2. Amazon Links . 96
7.3.3. Conditional Rendering Makes HTML Detection Rules Difficult 97
7.3.4. Websites May Detect Failing Image Rendering 97

7.4. Future Work . 97
7.4.1. Architectural and Infrastructural Improvements 98
7.4.2. Improve Authentication URL Detection 98
7.4.3. JavaScript Deobfuscation . 99
7.4.4. Improve JavaScript Source Detection for Static Crawler 99
7.4.5. Deduplicate Regionalized And Redirecting Domains 100
7.4.6. Detect Common Passkey Libraries . 100
7.4.7. JavaScript Usage Detection . 100

8. Conclusion 101

References 102

A. Appendix 113

X

List of Abbreviations

2FA two-factor authentication

API application programming interface
ARKG Asynchronous Remote Key Genera-

tion
AWS Amazon Web Services

BLE Bluetooth Low Energy

CA Certificate Authority
CDN content delivery network
CMS Content Management System
COSE CBOR Object Signing and Encryption
CPU Central Processing Unit
CQL Cassandra Query Language
CrUX Chrome User Experience Report
CTAP Client to Authenticator Protocol
CWCE Cloud-based Web Crawler Engine

DBMS database management system
DHT Distributed Hash Table
DNS Domain Name System
DOM Document Object Model

eID electronic ID card

FIDO Fast IDentity Online
FIFO First-In-First-Out

GPS Global Positioning System

HIBP Have I Been Pwned
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service
IAM Identity and Access Management
IANA Internet Assigned Numbers Authority
IDN Internationalized Domain Name
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISP Internet Service Provider

JMX Java Management Extensions
JS JavaScript
JVM Java Virtual Machine

MAC message authentication code
MFA multi-factor authentication
MITM Man-In-The-Middle

mTAN mobile Transaction Authentication
Number

NAT Network Address Translation
NFC Near-Field Communication
NIST National Institute of Standards and

Technology

OS operating system
OTP one-time password

PIN personal identification number

RAM Random Access Memory
Regex regular expression
RP Relying Party
RSA Rivest–Shamir–Adleman

SEO Search Engine Optimization
SIM Subscriber Identity Module
SMS Short Message Service
SoC System on a Chip
SPA Single-Page Application
SQL Structured Query Language
SSH Secure Shell
SSO Single Sign-On

TCP Transmission Control Protocol
TLD Top Level Domain
TLS Transport Layer Security
TOTP Time-based One-Time Password
TTFB Time to First Byte

U2F Universal 2nd Factor
UDP User Datagram Protocol
UI user interface
ULA Unique Local Address
URI Uniform Resource Identifier
URL Uniform Resource Locator
USB Universal Serial Bus
UX user experience

vCPU virtual Central Processing Unit
VM Virtual Machine
VPN Virtual Private Network

W3C World Wide Web Consortium
WebAuthn Web Authentication
WWW World Wide Web

Zstd Zstandard

XI

List of Tables
1. Relevant Authentication Attacks . 4
2. Authentication Factors . 5
3. Data Structures: Tables . 33
4. Responses: Example Row . 33
5. Implemented Authentication Method Matching Rules 41
6. Chrome Tabs vs. Windows Measurement Results 43
7. Instance Specifications for Cassandra Load Test 1 51
8. Instance Specifications for Cassandra Load Test 2 54
9. Instance Specifications for RabbitMQ Load Test 1 55
10. Instance Specifications for RabbitMQ Load Test 2 57
11. Evolution of Crawler Specifications Throughout the Crawl 58
12. Matched Sites Per Rule and Crawler . 75

List of Figures
1. WebAuthn Conditional UI . 18
2. High-Level Architecture Overview . 29
3. Results of Sannysoft Bot Detection Test . 45
4. Cassandra Load Test 1 . 52
5. Cassandra Load Test 2 . 54
6. RabbitMQ Load Test 1 . 55
7. Node Metrics – cassandra-1 . 62
8. Node Metrics – crawler-dynamic-1 . 64
9. Node Metrics – crawler-static-1 . 66
10. Network Usage – nat64-gateway . 67
11. Crawler Load Metrics . 68
12. Distribution of Content Per Target . 72
13. Detected Authentication Methods per Site, Separated by Crawler Type 73
14. Matched Sites Per Rule and Crawler . 74
15. Best Buy Landing Page . 79
16. VM Disk Usage During and After Stress Test . 89

List of Listings
1. OTP URI Example . 7
2. Creating FIDO Credentials . 11
3. Authenticating using FIDO Credentials . 12
4. Conditional UI JavaScript Example . 19
5. Conditional UI HTML Example . 19
6. Robots Exclusion Protocol Example . 22
7. Simplified Soup Query Example . 38
8. Including and Excluding Authentication URL Patterns 39
9. Examples of JavaScript Obfuscation . 40
10. Simplified Media Blocking Code Excerpt . 44
11. JavaScript-Based Hyperlink Examples . 79
12. Excerpts from Visits to microsoft.com . 80

XII

1 INTRODUCTION

1. Introduction
More and more things in everyday life are taking place online. From social media to online
shopping and online banking to digital government services, many activities require some form
of a person’s identity. People verify their identity by authenticating themselves to the service
provider using personal credentials. Typically, this means a combination of a publicly-known
username and a confidential password that only legitimate users should know.

Password-based authentication has many flaws that malicious actors are exploiting continuously.
For instance, users are expected to remember their passwords but to prevent others from being
able to guess them, unique passwords must be long and complex. However, humans have a hard
time memorizing a long sequence of random, incoherent characters.

Because passwords are shared secrets, users are supposed to hand their passwords over to the
service provider for authentication. At the same time, users do not have any way of influencing or
even knowing how service providers handle their secrets. Time and time again, credential spills
are surfacing on the Internet because a service provider did not take appropriate measures to
prevent leaking their users’ passwords. And since secure passwords should be long and complex,
users tend to reuse them. In fact, research suggests that 70% of people reuse their passwords for
some, most, or all of their online accounts [192]. As a result of credential spills, these passwords
fall into the hands of attackers that can use them for credential stuffing attacks, trying to sign
in on other online services with a known username or email and password combination.

However, another heavy burden is placed on users: They are expected to verify that the service
provider asking for their password is genuine and that they are not being tricked into handing
their credentials over to an attacker whenever they authenticate anywhere. Research shows that
users have no viable way to avoid getting phished if attackers use appropriate techniques and
catch the right moment [6, 89, 180].

To solve these problems once and for all, a new authentication technology emerged: Fast IDen-
tity Online (FIDO) credentials. Industry leaders have joined forces to form the FIDO Alliance,
which is set out to protect users from credential spills, phishing, and other password-related
threats. FIDO credentials are based on asymmetric cryptography to avoid sending confidential
data over the wire, which makes credential spills impossible. Moreover, because FIDO cre-
dentials are cryptographically bound to the associated service provider’s domain, phishing is
rendered impossible, releasing users from the burden of verifying their counterparts for every
authentication operation.

Since their inception, the adoption of FIDO credentials has gradually increased as part of multi-
factor authentication (MFA) flows used by a small group of technically well-versed people. That
is because the most secure form of a FIDO credential, a physical security key, involves additional
cost and has usability downsides to a point where ordinary users do not realize the importance
of the provided security benefits [65, 124]. To lift FIDO credentials out of their niche existence
and push their widespread adoption, Apple, Google, and Microsoft have collaborated with other
members of the FIDO Alliance in a joint effort to replace password authentication with passkeys,
i.e., multi-device FIDO credentials, that aim at mitigating user experience (UX) issues that
previously hindered large-scale adoption.

To comprehend the viability of a passwordless future, research needs to quantify support for
FIDO credentials on the web so that the adoption rate can be monitored over time. With that
goal in mind, this thesis presents the first iteration of a distributed crawler to measure the
adoption of phishing-resistant authentication methods on the web.

1

1 INTRODUCTION

Because content on the web is increasingly rendered on the client side, it is questionable whether
traditional crawling of static web content is able to detect the use of the relevant Web Au-
thentication (WebAuthn) browser application programming interface (API) that facilitates the
communication with FIDO authenticators on the client side. To investigate this, every targeted
website is crawled using a traditional Hypertext Transfer Protocol (HTTP) client that fetches
static content and, in addition, using a dynamic crawler that remote-controls a full web browser
and can collect client-side rendered content.

Therefore, this thesis seeks to answer the following research questions:

R1 Is it possible to automatically detect usage of authentication methods on the web with a
reasonable accuracy?

R2 Does the detection rate differ for static and dynamic web crawling?

The remainder of this thesis is structured as follows: In section 2, previous work related to
authentication on the web and building distributed web crawlers is reviewed. Section 3 estab-
lishes requirements and presents the software architecture for the proposed crawler. Section 4
describes the crawler’s implementation, while section 5 covers the automated deployment pro-
cess and some infrastructural optimizations. The crawl results are analyzed quantitatively and
qualitatively in section 6. Finally, section 7 discusses the limitations of the presented approach
and gives an outlook on possible improvements for future work before section 8 concludes the
thesis.

2

2 RELATED WORK

2. Related Work
This thesis is based on two distinct categories of previous research. On the one hand, knowledge
of the available means by which a user can be authenticated on the Internet is the foundation
for evaluating and comparing characteristics such as their usability and possible attack surfaces.
This evaluation motivates exploring the adoption of superior authentication methods across the
web. Related research is reviewed in section 2.1.

On the other hand, looking at research on the design of distributed web crawlers and learning
from previous findings is essential to carry out large-scale measurements on the web. Section 2.2
gives an outlook of previous work in this area.

2.1. Means of Authentication
Many use cases on the World Wide Web (WWW) are only viable if users can uniquely and
securely authenticate themselves to service providers. This includes all services for which users
pay money as a purchase or subscription. This section discusses several means of authentication
used on the web, including their benefits and drawbacks. First, section 2.1.1 discusses passwords
and their risks, while section 2.1.2 introduces several subsequent MFA mechanisms. Next,
section 2.1.3 introduces the essentials of FIDO authentication. Section 2.1.4 then discusses
obstacles in widespread FIDO adoption, while section 2.1.5 emphasizes its phishing resistance.
Finally, in sections 2.1.6 and 2.1.7, the newest developments of FIDO-enabled authentication
are presented.

2.1.1. Password-Based Authentication and Its Risks

Traditional password-based authentication has many shortcomings: Passwords that are easy to
remember are also easy to guess, while secure passwords are hard to remember. Passwords are
prone to be phished or spilled by service providers who negligently handle them. Indeed, the
number of reported credential spill incidents nearly doubled from 2016 to 20201, even though the
number of leaked credentials decreased [185]. Furthermore, because remembering (secure) pass-
words is challenging, many users tend to re-use them [192]. In 2022, phishing and personal data
breaches were the two top-reported Internet-related crimes worldwide [95]. Both are primarily
enabled by the inherent risks of using password-based authentication.

Complexity vs. Length

How well a password can protect an account is usually determined by its uniqueness. To make a
password unique, it should be randomly generated. In order to describe the level of randomness,
an entropy value in bits can be calculated. Entropy specifies the level of uncertainty in a
variable [171]. Equation (1) shows that entropy E in bit is calculated based on the number of
possible symbols N (complexity) to the power of the number of symbols L (length) to the log2.

E = log2(NL) (1)

To prevent accounts from being compromised, for many years, the National Institute of Stan-
dards and Technology (NIST) and similar institutions recommended implementers to impose

12016: 52 incidents (avg. credentials spilled 3.3B), 2020: 117 incidents (avg. credentials spilled 1.8B)

3

2.1 Means of Authentication 2 RELATED WORK

a set of rules on user-chosen passwords to ensure that an adequate level of complexity was
present [39]. However, these rules actively harm usability because passwords that fulfill complex
character set requirements are not easy to remember. Additionally, eq. (1) makes it fairly obvi-
ous that increasing the password length is a far more effective way to increase entropy compared
to increasing the character pool size. In light of these reasons, the prevailing opinion has shifted
and NIST now advises against using any complexity requirements other than a minimum pass-
word length [81]. Using longer passphrases composed of multiple words instead of traditional
passwords is also easier to remember and type [174].

Password-Based Attacks

Password entropy is an essential criterion for account security. However, table 1 shows that
the strength of a password is irrelevant for many common attacks [189]. Thus, many service
providers try to encourage users to protect their accounts from takeovers by using additional or
alternative authentication methods. Not all of these authentication methods provide the same
level of protection, though. A subset of approaches and their respective shortcomings is detailed
in the following.

Attack Description Attacker Has
Exact Password

Brute Force Testing a list of passwords against a single ac-
count. Passwords could be generated or taken
from a dictionary.

×

Credential Stuffing Testing credentials obtained from a data breach
on other accounts of the same user.

✓

Password Spraying Testing a single weak password against multiple
accounts.

×

Phishing Tricking a user into handing over their password. ✓
Keystroke Logging Intercepting a user’s input through malware. ✓
Local Discovery Discovering a password physically or digitally, e.g.,

on a paper note or in a text file on a computer.
✓

Table 1: Common Authentication Attacks [134, 143, 152, 189]

Password Reuse

In 2018, a representative survey found that 70% of adults in the United States reuse their pass-
words for some, most or all of their accounts. In contrast, only 22% said that they used unique
passwords [192]. To protect users from brute force attacks like password spraying, NIST advises
implementers to ensure passwords do not contain “commonly used, expected or compromised
values” and recommends to verify that passwords do not appear in breach corpora2 [81]. Have
I Been Pwned (HIBP) is a well-known, publicly available breach corpus whose API served up
to 1.26 billion requests per day in 2021. The corpus includes around 847 million breached pass-
words [90, 91]. Among others, the password manager 1Password uses HIBP to ensure password

2lists of previously compromised passwords

4

2 RELATED WORK 2.1 Means of Authentication

uniqueness [5]. To avoid exposing a user’s passwords to HIBP, their password query API de-
sign takes advantage of the mathematical property k-Anonymity [8, 90]. For instance, hospitals
that release patient data and want to avoid disclosing personal information also make use of
k-Anonymity [161]. In essence, k-Anonymity is provided if a dataset has k identical records for
every quasi-identifier, which is some form of distinctive data [161]. HIBP achieves k-Anonymity
by splitting a password hash into prefix and suffix. The API accepts queries for a fixed-size
prefix. Comparing the returned suffixes is done locally by the client. The used hash functions
provide two important properties: Firstly, since small changes in a hash function’s input result
in a significantly different output, one cannot infer the contents of one hash from another. This
algorithmic property is called the avalanche effect [67]. Secondly, since hashes are reasonably
uniformly distributed, there is roughly the same number of returned suffixes for each given
prefix [8].

Using a breach corpus to reject previously breached passwords can be an effective measure to
prevent password spraying and may also help with other brute force attacks like credential
stuffing [143, 152, 185]. However, effectively blocking 847 million password choices negatively
impacts usability. Rejecting this number of possible passwords is prohibitive for many users. A
2021 survey showed that 52% of people memorize their passwords. Only 24% use a dedicated
password manager [28]. Moreover, while rejecting passwords that appear in breach corpora
does protect users to some extent, it cannot fully prevent users from reusing their passwords on
multiple websites, which still leaves them vulnerable to credential stuffing and phishing attacks.

2.1.2. Multi-Factor Authentication

Section 2.1.1 shows how risky using passwords as a single factor of authentication can be. In
fact, research from Microsoft suggests that a non-randomly-generated password’s length and
complexity mostly do not matter in case of a breach, while MFA would have stopped 99.9% of
analyzed account compromises [189].

Over the last few years, surveys have found a continual increase in MFA usage from 28% in
2017 to 79% in 2021 in the United States and United Kingdom [11, 44].

The basic concept of MFA is to combine different types of evidence confirming a user’s identity.
Table 2 shows the four possible factors with some concrete examples. While requiring multi-
ple inputs of a single factor may provide some security benefits, it cannot be considered true
MFA [128]. The remainder of this section focuses on several common MFA methods and their
drawbacks. Additionally, section 2.1.3 describes FIDO authenticators, which may also be used
in a MFA context.

Factor Examples

Knowledge Password, personal identification number (PIN), security question
Possession Software certificate (e.g., Secure Shell (SSH) private key), physical security key,

Subscriber Identity Module (SIM) card
Inherence Fingerprint, facial recognition, iris scan
Location Internet Protocol (IP) address, Global Positioning System (GPS) coordinates

Table 2: Authentication Factors [128]

5

2.1 Means of Authentication 2 RELATED WORK

SMS-Based One-Time Passwords

In 2021, receiving one-time passwords (OTPs) via Short Message Service (SMS) [1] was the most
commonly used MFA factor with 85.2% in the United States and United Kingdom [44]. To use
this method, users provide their cellphone number on activation and subsequently receive their
OTPs over the cellular network. The method is also widely used in the banking sector, where
the OTPs are mostly referred to as mobile Transaction Authentication Numbers (mTANs). One
reason SMS-based OTPs are so widely used may be that nearly every user already has a cellphone
and can receive SMS messages [176]. Moreover, the concept of receiving six or eight numbers
in an SMS message and copying them into a login form is easily grasped. Therefore, it may be
less intimidating than other described methods. With a password being the first authentication
factor (proof of knowledge), the main idea is that in order to receive the SMS OTP, a user has
to prove possession of the cellphone tied to the registered cellphone number as a second factor.

However, many ways exist to circumvent SMS-based MFA. Since SMS messages are not end-to-
end encrypted, the attack surface expands to three or four involved parties where the OTP may
leak.

One way for an attacker to intercept OTPs is to perform a Subscriber Identity Module (SIM)
swapping attack where the telecommunication provider is tricked into sending a new SIM card
associated with the victim’s cellphone number to the attacker. This can be exceptionally easy
as some phone carriers verify one’s identity merely by asking for the full name, physical address,
and date of birth – all of which can be public knowledge [70, 159, 179].

Another method an attacker could use is wireless interception, although the effort involved is
probably feasible only for high-value targets. After jamming 4G and 5G cellular frequencies and
forcing a targeted device to downgrade to 3G or GSM, an attacker could record and decrypt the
relevant packets containing the target OTP [76, 139].

Intercepting the OTP on the receiving phone itself through smartphone trojans, on the other
hand, is a method that scales significantly better. Trojans like CruseWind are aimed specifically
at intercepting SMS OTPs [64]. Research has also repeatedly shown that intercepting mTANs
sent by financial institutions using smartphone trojans is possible [54, 168].

Perhaps the most obvious way of obtaining an SMS-based OTP, though, is just asking the victim
for it using a real-time phishing attack. Siadati et al. found that 50% of users can be tricked
into forwarding an OTP with a phishing message sent via SMS shortly after the attacker caused
an OTP SMS to get delivered to the victim’s phone. For example, “Did you request a password
reset for your Gmail account? Delete this message if you did. Otherwise, send ‘Cancel’ + the
verification code we just sent to you” was identified to be the most effective of all tested phishing
messages [172].

In conclusion, SMS-based MFA is the weakest of all showcased methods, and using it should be
avoided due to the large attack surface it provides. Still, 53.4% of respondents in a 2021 survey
said that they would adopt SMS MFA for a new account [44]. This may either indicate that
people are unaware of the dangers of using SMS OTPs, or that the ease of use outweighs the
perceived risk.

6

2 RELATED WORK 2.1 Means of Authentication

Time-Based One-Time Passwords

Time-based One-Time Passwords (TOTPs) are generated using the HMAC-SHA-1 algorithm [112].
A time step value based on the current UNIX timestamp [178] is used as the algorithm’s input,
along with a shared secret [126].

Let K be a static symmetric key shared between the server and the client. Let T0 be the initial
timestamp (defaults to 0), Tc the current timestamp, and X the time step size (defaults to 30
seconds) [126]. Then

T =
Tc − T0

X
and

TOTP = truncate
(
hmac(K,T)

)
.

(2)

Because users need to manually enter the rolling result into a login form, the value returned
by the HMAC function is truncated to a 4-byte string [126]. In order for the website provider
and the user to be able to generate the same TOTP at the same time, their local clocks need
to be synchronized. However, clock skew may cause one of the local clocks to get slightly
out of sync. Moreover, networks may introduce a varying degree of latency, so TOTPs can
arrive one or more time steps later at the authenticating server. For those reasons, RFC 6238
recommends that implementers define an acceptable window of past and future time steps to
improve usability [126].

In the previously mentioned survey, using authenticator apps was the third-most-popular second
factor with 44.4% of respondents [44]. Most apps generate TOTPs using a key Uniform Resource
Identifier (URI) format initially defined by Google [80]. To make importing easier, most apps
support scanning a QR code containing a URI similar to listing 1.

Listing 1: OTP URI Example
1 otpauth://totp/ACME%20Corp:Jane%20Doe?secret=7LAY5SF7XPBZKR9HVSLEBPSD3SV8G8JF&issuer=↩

↪ACME%20Corp

Unfortunately, in the past, Google’s reference server implementation only used a default key
length of 80bit [82]. This is in violation with RFC 4226, which defines a minimum key length
of 128bit and recommends using 160bit [125]. Research shows that using a shorter key length
makes recovery of the key feasible if any two OTP values are known [184]. Regrettably, many
websites still use an insecure key length. In a small, biased sample, the following vendors were
found to have issued 80bit keys over the last few years: Autodesk, Discord, GitHub, Microsoft,
Nextcloud, PayPal, Tumblr, Twitter, and Ubiquiti. It is important to note that it has not been
verified whether these companies are still issuing new keys of this length today.

Aside from individual implementation issues, using TOTPs can significantly improve account
security. However, even accounts secured with TOTP MFA are susceptible to account takeovers
using a phishing attack. After all, humans are still ultimately responsible to verify that they
enter their credentials only on the correct website domain. And even though password man-
agers can help validate the domain based on auto-filling the TOTP on login forms, many people
are used to manually entering the credentials when auto-filling does not work correctly. There
are countless ways an attacker can trick victims into visiting phishing sites, for example, uti-
lizing Internationalized Domain Names (IDNs) that are visually indistinguishable from the real
domain [89]. Since TOTPs are replayable, they are also susceptible to real-time phishing at-
tacks [6]. Humans are always the weakest link and should not be responsible for validation

7

2.1 Means of Authentication 2 RELATED WORK

tasks that are extremely difficult for people but relatively easy for computers. Adoption of
FIDO-based authentication covered in section 2.1.3 has the potential to free users from this
burden.

Some non-TOTP MFA apps like Octa Verify [141] or Duo Mobile [46] are used in a similar
fashion, but login attempts trigger a push notification. In the app, users may then permit or
deny those attempts. Apart from being vulnerable to phishing attacks, push-based MFA is also
vulnerable to MFA fatigue attacks, where an attacker repeatedly triggers a push notification,
hoping the user gets annoyed until they finally authorize the login attempt. This approach
has recently enjoyed particular popularity [2, 40]. For instance, Uber was successfully breached
using an MFA fatigue attack in 2022 [182].

2.1.3. FIDO2 and WebAuthn Essentials

In collaboration with the World Wide Web Consortium (W3C), the FIDO Alliance published
the protocol standards WebAuthn and Client to Authenticator Protocol (CTAP) for a novel,
easy-to-use authentication mechanism based on asymmetrical cryptographic key pairs. The
project is commonly known as FIDO2 [34, 100]. At the time of writing, over 95% of global
web browsers already support the WebAuthn API [56]. Recently, news outlets reported on an
industry-wide push to replace passwords with passkeys, which are FIDO credentials that are
stored on and synchronized between a user’s devices [38, 51, 71, 77, 108, 113]. Section 2.1.6
presents the underlying technical concept of multi-device FIDO credentials.

Terminology

Before addressing how FIDO authentication works in detail, some relevant terminology needs
to be introduced.

FIDO Alliance The Fast IDentity Online (FIDO) Alliance is an organization made up of
various stakeholders within the information technology industry. Its 41 board members include
1Password, Amazon, Apple, Google, Intel, LastPass, Lenovo, Mastercard, Meta, Microsoft,
PayPal, Samsung, Visa, Yubico, and others [68]. Together with its 81 sponsor level, 9 government
level, and 188 associate level members, there are a total of 319 members [68].

FIDO2 FIDO2 is the name of the authentication framework. It is a joint project of W3C
and the FIDO Alliance. At its core are the WebAuthn API specified by W3C and CTAP, which
is specified by the FIDO Alliance [32, 34].

WebAuthn The Web Authentication (WebAuthn) API was standardized by W3C in 2019 [100].
It is a JavaScript (JS)-based browser API that exposes a Credentials interface that can be used
to interact with FIDO authenticators to register and authenticate using FIDO credentials [32].

CTAP The Client to Authenticator Protocol (CTAP) defines communication with FIDO
authenticators. An authenticator could be accessed over a transport method such as Universal
Serial Bus (USB), Near-Field Communication (NFC), or Bluetooth Low Energy (BLE) [34].
The second version of the standard, CTAP2, introduces CBOR Object Signing and Encryption
(COSE) [167], protocol extensions, and new attestation formats [34]. It is backward compatible

8

2 RELATED WORK 2.1 Means of Authentication

with the first protocol version, CTAP1, which is primarily known as Universal 2nd Factor
(U2F) [34]. Modern, FIDO2-compatible authenticators communicate using CTAP2.

Platform Authenticator A platform authenticator is attached to a client device and is usually
not removable from the device. For example, this could be a fingerprint sensor on a smartphone
with a secure element where key material is stored. The WebAuthn specification classifies the
enumerated AuthenticatorTransport of platform authenticators as internal [32].

Roaming Authenticator In contrast to platform authenticators, roaming authenticators are
attached using cross-platform transports like USB, NFC, or BLE and can be removed from the
client device. For example, this could be a physical security key. A roaming authenticator sets
the enumerated AuthenticatorTransport value according to its transport method, for example,
usb. An authenticator may support more than one transport method [32].

Relying Party Services that want to authenticate a user with FIDO2 are considered a Relying
Party (RP). RPs may explicitly define an RP ID based on their domain name, excluding scheme,
port, and path. If a subdomain is part of the ID, any lower-level domain is also valid, but not vice
versa. For example, valid IDs for a website with implicit ID served at https:^/auth.example↩
↪.com/login would be auth.example.com and example.com, but not v2.auth.example.com or
example.org. A FIDO credential is cryptographically bound to an RP ID, so the ID needs to
be considered immutable [32]. Section 2.1.5 details the importance of the RP ID for phishing-
resistance.

Attestation Some RPs may need additional assurances that an authenticator complies with
legal or security requirements. To do this, RPs may specify an attestation conveyance preference.
This is particularly relevant in an enterprise context, where RPs may want to identify individual
authenticators in a controlled deployment (enterprise). For instance, attestation may also
be used to prove an authenticator has a particular certification (direct). Because attestation
statements have the potential to enable user tracking across the web, the indirect option allows
authenticators to replace authenticator-generated attestation statements with ones generated by
an Anonymization Certificate Authority (CA). Most RPs, however, do not need such assurances,
so they should use the none option [32].

User Verification RPs may require or prefer the authenticator to verify the user before
being able to use a FIDO credential. The credential must then be unlocked, for example, using
biometrics or a personal identification number (PIN). In the returned response, an authenticator
indicates whether it verified the user by setting a UV flag. By default, user verification is preferred
but not required [32].

Discoverable Credentials Client-side discoverable FIDO credentials are discoverable for clients
without the RP having to provide any allowed credential IDs first. This means that previous
RPs do not necessarily need to identify the user beforehand [32]. Usually, platform authentica-
tors have the ability to store discoverable credentials, while roaming authenticators may not, for
example, because of limited storage space. Discoverable credentials were previously referred to
as resident credentials or resident keys [32].

9

2.1 Means of Authentication 2 RELATED WORK

Cryptographic Algorithm Identifiers Authenticators can support a number of cryptographic
algorithms. These algorithms are identified using a unique integer value defined in the Inter-
net Assigned Numbers Authority (IANA) COSE Algorithms Registry [92]. RPs specify their
supported algorithms when using the WebAuthn credentials interface in the pubKeyCredParams
array [32]. For example, support for ES2563, which is based on elliptic curve cryptography, and
RS2564, which is based on the Rivest–Shamir–Adleman (RSA) cryptosystem, would result in a
value of [-7, -257] [92].

Basic Functionality

The basic idea of FIDO is to replace knowledge-based authentication using a shared secret
that may be memorized (password) with a possession-based asymmetric cryptographic key pair.
By using a signature-based authentication process, users do not need to send a secret to the
authenticating service to prove their identity. Instead, the RP sends a challenge that the user’s
authenticator signs or encrypts using its private key as proof of possession. This way, the user’s
secret is never transmitted to the authenticating service, making Man-In-The-Middle (MITM)
eavesdropping attacks impossible. The user’s secret cannot even get exposed if a data breach
occurs at the authenticating service5 – because the service only ever stores and has access to
the user’s public key and the unique credential ID [32].

The private key never leaves a roaming authenticator like a physical security key. This makes it
practically impossible for an attacker to extract the private key, even if the user’s computer is
compromised. Some security keys do not store the private key directly but derive it on demand
from the RP ID, a random nonce, and a device-specific secret using a message authentication
code (MAC) function [138]. This approach eliminates any storage capacity limitations, which
means the security key can be used on an infinite number of websites.

FIDO2 can be used as a singular factor6 or in combination with other factors in the context of
MFA [32]. RPs can require the authenticator to verify the user through biometrics, a PIN, or
other means [32]. User verification is especially useful when authenticating users with a FIDO
credential as a single factor. One can argue that the combination of possessing the authenticator
and knowing the PIN or presenting one’s face or fingerprint already constitutes MFA.

Registration Ceremony

Before an authenticator can be used, it has to create a new credential for the RP during a
registration ceremony. The ceremony is initiated through a navigator.credentials.create()
browser API call like to the one in listing 2. Beforehand, the client-side code fetches the RP
ID, a random challenge, and other creation options from the server. For instance, the RP may
exclude credentials that the user has already registered. When the WebAuthn API is invoked,
the browser ensures that the website’s origin matches the RP ID and that the origin’s scheme
is https [32].

When the browser passes the request to the authenticator using CTAP, the authenticator typ-
ically ensures user presence – for example, by requiring the user to press a physical button.

3ECDSA with SHA-256
4RSASSA-PKCS1-v1 5 with SHA-256
5also known as credential spilling
6commonly referred to as “passwordless”

10

2 RELATED WORK 2.1 Means of Authentication

The authenticator then generates an asymmetric key pair with the RP ID as an input param-
eter. It may use a one-way keyed function like HMAC-SHA256 with the RP ID and a random
nonce as input and a device-specific secret generated on-chip during manufacturing as the key.
The output of that function becomes the private key. The nonce value, in combination with a
MAC, becomes the credential ID7. This ID is a unique identifier for the corresponding FIDO
credential [32, 34, 138].

The returned result of the WebAuthn API call contains the credential ID, a signed challenge
response, and the corresponding public key within an attestation object. The WebAuthn spec-
ification requires RPs to follow a 27-step procedure when registering a new FIDO credential.
Among other things, implementers must validate the credential origin, the signed challenge re-
sponse, the correct response type, and optionally, whether the authenticator verified the user’s
presence. To validate the challenge response, the RP verifies that the public key is consistent
with the challenge response signature. After successful validation, the RP can store the creden-
tial ID, the public key, and optionally, detailed information on the authenticator, like available
transport methods [32].

Listing 2: Creating FIDO Credentials
1 const credential = await navigator.credentials.create({
2 publicKey: {
3 // Relying Party
4 rp: {
5 name: "ACME Corp",
6 id: "auth.example.com", // (optional)
7 },
8
9 // User data

10 user: {
11 id: Uint8Array.from("ABC123", c => c.charCodeAt(0)),
12 name: "jane.doe@example.com",
13 displayName: "Jane Doe",
14 },
15
16 // Challenge generated by the server
17 challenge: Uint8Array.from(
18 randomStringFromServer, c => c.charCodeAt(0)),
19
20 // Accepts ES256 or RS256 credentials, but prefers ES256
21 pubKeyCredParams: [
22 {
23 type: "public-key",
24 alg: -7, // ES256
25 },
26 {
27 type: "public-key",
28 alg: -257, // RS256
29 },
30],
31
32 // Relying Party does not care about attestation (optional)
33 attestation: "none",
34

7equivalent to a U2F key handle

11

2.1 Means of Authentication 2 RELATED WORK

35 // Exclude previously registered authenticators (optional)
36 excludeCredentials: [
37 {
38 type: "public-key",
39 id: Uint8Array.from(window.atob(
40 "NjFjZmQ5MDliZDU4MTVjYjVjZmY3NzU3YThiNzlkY2UK"),
41 c => c.charCodeAt(0)
42),
43 }
44],
45 },
46 });
47
48 console.log(credential);
49
50 // PublicKeyCredential {
51 // type: "public-key",
52 // id: "OWFiZGIwYjYxZTJkNzExZTFjZDRlYzcxYTJmNGNlNGYK",
53 // rawId: ArrayBuffer(44),
54 // response: AuthenticatorAttestationResponse {
55 // clientDataJSON: ArrayBuffer(121),
56 // attestationObject: ArrayBuffer(306),
57 // },
58 // }

Authentication Ceremony

To authenticate a user, RPs use the same challenge-response pattern. The authentication cer-
emony is initiated by a navigator.credentials.get() call similar to the one in listing 3. Of
course, RPs should verify that the client supports WebAuthn. Testing whether the window.↩
↪PublicKeyCredential property is present is one way to ensure support (lines 1-3). In prepa-
ration for authenticating users, the RP needs to fetch a new random challenge and optionally
the RP ID from the server. For instance, if WebAuthn is used in a MFA context, fetching the
user’s registered FIDO credentials and allowing only those may also make sense. When invoking
the WebAuthn API, the browser checks that the website’s origin matches the RP ID’s scope
and that the scheme is https. The authenticator then retrieves or generates the private key
corresponding to the RP ID, and possibly one of the allowed credential IDs. It uses the private
key to sign the server’s challenge and returns the response along with the utilized credential’s
ID. The RP then, among other things, verifies that the signature matches the public key on file
for the credential ID in question and that the origin in the returned client data object is – in
fact – the RP’s origin. If all verifications are successful, the user can be signed in [32, 151].

Listing 3: Authenticating using FIDO Credentials
1 if (!window.PublicKeyCredential) {
2 // Client has no WebAuthn support
3 // Handle error...
4 }
5
6 const assertion = await navigator.credentials.get({
7 // Challenge generated by the server
8 challenge: Uint8Array.from(
9 randomStringFromServer, c => c.charCodeAt(0)),

12

2 RELATED WORK 2.1 Means of Authentication

10
11 // Relying Party ID (optional)
12 rpId: "auth.example.com",
13
14 // Allow registered credentials (optional, useful for MFA)
15 allowCredentials: [{
16 id: Uint8Array.from(
17 "OWFiZGIwYjYxZTJkNzExZTFjZDRlYzcxYTJmNGNlNGYK",
18 c => c.charCodeAt(0),
19),
20 type: 'public-key',
21 transports: ['usb', 'ble', 'nfc'],
22 }],
23 });
24
25 console.log(assertion);
26
27 // PublicKeyCredential {
28 // type: "public-key",
29 // id: "OWFiZGIwYjYxZTJkNzExZTFjZDRlYzcxYTJmNGNlNGYK",
30 // rawId: ArrayBuffer(44),
31 // response: AuthenticatorAssertionResponse {
32 // authenticatorData: ArrayBuffer(191),
33 // clientDataJSON: ArrayBuffer(118),
34 // signature: ArrayBuffer(70),
35 // userHandle: ArrayBuffer(10),
36 // },
37 // }

2.1.4. Obstacles of FIDO2 Adoption

Two aspects are decisive for the widespread adoption of FIDO2: Service providers need to
support it – and users need to use it. On the user side, a good UX will determine whether
people will use FIDO over traditional authentication methods.

In 2020, Lyastani et al. carried out the first large-scale usability lab study about passwordless
authentication. While it is encouraging that results show users are willing to accept a security
key as a direct replacement for passwords for single-factor authentication, they also identified
users’ concerns that may hinder widespread FIDO adoption [124]. For instance, participants
were afraid someone could gain access to their accounts with a lost or stolen security key [124].
Several participants raised the question of how to “revoke” or “recover” an account’s access.
They also voiced their desire for a backup authentication method [124]. However, a participant,
who claimed to have been a victim of password theft in the past, also pointed out that the
disappearance of a security key from one’s possession immediately warns the user of a potential
account intrusion attempt. In comparison, passwords cannot offer this implicit guarantee that
no one else can access one’s account as long as one is in possession of their security key [124].
Lyastani et al. also found that even after watching a video-based introduction to the technology,
participants only had a rudimentary mental model of the technology since obvious misconcep-
tions were present in 59% of free-text responses. For example, participants questioned whether
it was possible to track their exact location once they inserted their security key [124]. Lyastani
et al. conclude that a lack of technical background knowledge and the associated lack of trust
can be one of the biggest hurdles in widespread FIDO adoption [124].

13

2.1 Means of Authentication 2 RELATED WORK

Keil et al. found similar trust issues due to a lack of technical knowledge in their qualitative user
study. They examined users’ impressions of usability, their perception of security, and overall
acceptance of using a German electronic ID card (eID) as a second-factor FIDO authenticator.
Although the login was generally perceived to be easy, non-tech-savvy participants were found
to struggle with the setup [104]. Additionally, misconceptions regarding the transmission of
personal information to the authenticating service were observed. 45% of participants8 thought
that at least some personal information would be shared with service providers even though that
was not the case [104]. In fact, the app9 released by the German government for interacting
with the eID shows precisely what information will be read from the eID’s chip before entering
the PIN. In the case of the study prototype, the app displayed that only a “pseudonym” would
be read [104].

Farke et al. accompanied a small software company deploying FIDO2 security keys as a single
authentication factor in a qualitative study. Most participants considered FIDO-based authen-
tication usable, but several stopped using the security key as it was slower than using the
password manager built into their web browsers. Moreover, the security benefits of FIDO2 were
mostly intangible and participants perceived them as unnecessary [65]. However, participants’
statements suggested that the habit of using passwords were deeply ingrained and could not be
easily replaced within the study’s timeline of just four weeks [65].

Lassak et al. conducted three studies focusing on smartphones as FIDO authenticators, as they
have the potential of a more widespread adoption compared to specialized security hardware
that is entailed with extra costs. In the first study, they established a baseline of common mis-
conceptions when using smartphones as authenticators [115]. In the second study, they educated
participants on the technology behind FIDO and used a co-design approach to formulate useful
notifications to be used in a WebAuthn authentication flow. This approach aims to benefit
from end-users’ creativity and opinions [115]. Finally, the third study tested the effectiveness
of eliminating misconceptions of the co-designed browser notifications on a new group of partic-
ipants [115]. Probably due to misconceptions that were initially spread when biometric phone
unlocking was first introduced and the superficial appearance of users signing into web services
only with their fingerprint or face, 67% of participants in the first study incorrectly assumed
their biometrics were sent to the authenticating website [115]. Another common misconception
was that the fallback mechanism to unlock one’s phone by PIN, pattern, or password was not
applicable in a FIDO context [115]. Although the co-designed notifications were able to partially
address misconceptions in the third study, and most participants indicated they were willing to
adopt biometric FIDO authentication, many participants still held key misconceptions. Partic-
ularly, people were still confused about where biometric information was stored. Lassak et al.
concluded that there was a need for more expansive education efforts [115].

In 2021, when the studies by Lassak et al. were conducted, participants also incorrectly assumed
that they could use their other devices to sign in to websites once they registered one of them. At
the time, FIDO authenticator implementations in iOS and Android were not designed to transfer
private keys from one device to another. However, this constraint has been addressed by the
FIDO Alliance with the introduction of multi-device FIDO credentials, which are described in
section 2.1.6.

Similarly to their research in 2020, Farke et al. accompanied the introduction of Microsoft’s
platform authenticator Windows Hello in a small business through a qualitative study in 2022.
In contrast to the study in 2020, participants perceived Windows Hello to be faster and more

8absolute: 9 of 20 participants
9AusweisApp2

14

2 RELATED WORK 2.1 Means of Authentication

responsive than the traditional Windows login process [66]. Although they liked using the
FIDO-based authentication, participants tended to use PINs as a replacement for their longer
passwords instead of using biometrics [66].

Research has shown that one major issue with FIDO authenticators like security keys is the
risk of token loss and the means of token recovery and revocation. Schwarz et al. tried to
explicitly solve the token loss issue by designing a cloud-based credential service acting as a
FIDO authenticator that generates recoverable FIDO credentials on demand using immutable
data like name, date of birth, and place of birth from government-issued eIDs [170]. The idea
is that this data will not change, even when a refreshed eID is issued [170]. Additionally, there
is no added cost for users since they already possess an eID [170]. The downside of this system
design, though, is that the web service has to be trusted, and it must guarantee high availability.
Previously cited research has repeatedly shown a lack of users’ trust, especially among people
who are not technically inclined. These findings raise significant doubts about the success of
such a design.

In the field of FIDO token revocation, only little published research is available. However,
Hanzlik et al. recently released a preprint version of their yet-unpublished paper10 proposing a
revocation procedure based on BIP32 key derivation, mainly used in cryptocurrency wallets.

Regarding token recovery, there have been some developments in recent years. For example,
with roaming authenticators in mind, security key vendor Yubico proposed a WebAuthn pro-
tocol extension to create a backup authenticator that shares key material with the primary
authenticator. It is founded on a new cryptographic primitive called Asynchronous Remote
Key Generation (ARKG) [121]. Frymann et al., in cooperation with Yubico, published a crypto-
graphic analysis of the proposal proving its security [72]. Concerning platform authenticators, in
2022, the FIDO Alliance introduced the concept of multi-device FIDO authenticators, commonly
referred to as passkeys. They will be discussed in section 2.1.6.

While UX issues are a potential major hurdle in widespread FIDO adoption, a large number of
service providers need to integrate WebAuthn support into their offerings in order for general
user adoption to even become possible. Alam et al. in 2019 concluded that comprehensive infor-
mation on secure implementations of WebAuthn was extremely sparse [7]. Most implementers
simply do not read the W3C specification, and apart from that, the web is full of unfinished,
broken, or unmaintained code examples and libraries [3, 4, 63]. After analyzing implementers’
questions on developer forums like Stack Overflow, Alam et al. identified a need for official,
more comprehensive educational materials [7]. Fortunately, the situation has been improving
over recent years, with more documentation by large vendors and open-source plug-and-play
WebAuthn libraries becoming available since the introduction of multi-device FIDO authentica-
tors and the adoption of the technology by industry leaders like Apple and Google [14, 16, 22,
24, 114, 193].

2.1.5. Towards Phishing-Resistance

Phishing was by far the most reported cyber crime category worldwide in 2022 [95], empha-
sizing the importance of protecting users from phishing attacks. One of the main benefits of
FIDO-based authentication is its resistance to those attacks. Because a website’s domain is cryp-
tographically bound to any FIDO credentials used on the site and the authentication process is
challenge-response-based, attackers have no way of tricking people into using those credentials

10will appear at IEEE S&P 2023

15

2.1 Means of Authentication 2 RELATED WORK

on a fake site [99]. Users also cannot communicate their FIDO credentials via email, SMS, over
the phone, or otherwise. Thus, even manual efforts like spear phishing or voice phishing11 are
pointless.

However, users might not know which authentication methods protect them from phishing at-
tacks. For instance, all participants of a small pilot study investigating user awareness of phish-
ing and WebAuthn thought traditional two-factor authentication (2FA) methods protected them
against phishing [180]. Hence, educating and persuading users to replace their traditional au-
thentication methods with a FIDO-based approach is vital.

Moreover, attackers will always target the weakest link to achieve their goal. If FIDO-protected
accounts have phishable backup authentication options, attackers will entice users to use those
instead of their phishing-resistant FIDO credentials. Research revealed that social engineering
downgrade attacks against FIDO-based authentication are feasible with high success rates [183].
Ulqinaku et al. found that 55% of study participants fell for a real-time phishing attack forcing
an authentication method downgrade through social engineering, while another 35% were found
to be potentially susceptible to this kind of attack in practice [183]. For the study, a real-time
phishing platform was built that downgraded FIDO-based second-factor authentication [183].
The authors also observed that all FIDO-supporting websites in Alexa’s top 100 allow choosing
alternate second factors, making them potentially vulnerable to similar downgrade attacks [183].
None of the study’s participants indicated that they would rely on FIDO to detect phishing
attempts. In fact, some participants had a false sense of security as they thought their accounts
were protected because they had FIDO 2FA enabled, even though they were phished with one
of the backup authentication methods during the user study [183]. No evidence was found that
any of the 51 participants understood the underlying concept [183]. Ulqinaku et al. concluded
that a refusal to accept alternative 2FA methods if the user has FIDO authentication enabled
was the only way to effectively prevent downgrade attacks [183].

2.1.6. Multi-Device FIDO Credentials

Before 2022, all FIDO credentials – on both roaming and platform authenticators – were con-
strained to a single device and thus not transferrable. That is because for single-device FIDO
credentials, the private key material is device-specific and stored in a secure element that pre-
vents readout [85]. This was also the case for smartphones with iOS and Android operating
systems. But, of course, like with most security measures, the benefit of added security is pit-
ted against a UX drawback. For instance, users cannot synchronize their credentials between
devices, risking losing access to accounts if a device is lost.

To improve UX and drive adoption, the FIDO Alliance, in coordination with W3C, proposed
additions to the FIDO and WebAuthn specifications [69]. The proposal introduced multi-device
FIDO credentials [69] that can be synchronized between devices within the same ecosystem.
For example, users of Apple devices can synchronize their credentials from their phone to their
tablet and desktop computer [14]. The same is true for other ecosystems like Google’s Android
operating system. Currently, synchronization is only possible within one of those ecosystems,
though. The synchronization is possible because the private key material is no longer bound to
the secure element of a single device [69, 85]. While this change results in a lower level of security,
it also has the potential to eliminate one of the major usability issues: recoverability [85].

11impersonation over the phone

16

2 RELATED WORK 2.1 Means of Authentication

Along with the FIDO Alliance’s proposal went a joint public commitment by Apple, Google, and
Microsoft to expand support for FIDO-based passwordless single-factor authentication. All three
companies announced support for multi-device FIDO credentials in their operating systems [14,
27, 74, 98, 193]. Because “multi-device FIDO credential” does not exactly roll of the tongue
easily, the companies refer to them with the consumer-friendly term passkey12. It is unfortunate
that there are conflicting definitions of what a passkey is [69, 85], but this thesis will use the
following distinction:

• A security key is a roaming authenticator that typically produces single-device FIDO
credentials.

• A passkey is a multi-device FIDO credential typically produced by a platform authentica-
tor.

• A single-device passkey is a single-device FIDO credential produced by a platform authen-
ticator.

The latter is a special case that should rarely be relevant. For instance, older versions of iOS
only support single-device FIDO credentials but not multi-device FIDO credentials. Newer iOS
versions only support multi-device FIDO credentials, not single-device ones [97]. The removal
of iOS’s ability to generate single-device FIDO credentials that provide greater security has
been criticized after Apple’s presentation of passkeys [97]. The reasoning behind this decision
is comprehensible, though. Support for both types may have confused users into thinking their
credentials were backed up when, in fact, they were not. Security keys still are an option for
those that appreciate the added level of protection of a single-device FIDO credential.

In addition to multi-device FIDO credentials, the FIDO Alliance also proposed a new protocol
based on the Bluetooth standard to make smartphones capable of acting as roaming authentica-
tors [69]. The protocol is a derivative of caBLE, an earlier proposal by Google [133]. The latest
draft of the next CTAP specification version introduces the concept under a new hybrid authen-
ticator transport method [31]. A client (e.g., a web browser) starts the authentication ceremony
by displaying a QR code that the user has to scan with their smartphone’s camera. The smart-
phone, acting as an authenticator, and the client device establish a BLE communication channel
using a shared secret within the QR code’s URI content. The use of Bluetooth is intended to
guarantee physical proximity [31]. The actual transport of CTAP2 messages happens over a
high-availability tunnel network service with a domain name known to the authenticator [31].
This will typically be a service the phone’s operating system (OS) vendor provides. The new hy-
brid transport makes it possible to use a passkey on devices outside their originating ecosystem.
For example, a user could sign in on a Windows computer using Chrome when their passkey
was stored on their iCloud keychain using their iPhone [69].

Since their announcement, passkeys have been widely reported on by various industry-specific
news outlets, as well as large mainstream publications [38, 51, 71, 77, 108, 113]. Besides Ap-
ple, Google, and Microsoft, password manager vendors like AgileBits (1Password), or Dashlane
have also announced support for passkey management [145, 190]. Aside from companies like
Cloudflare or GitLab, which recently started exclusively requiring a FIDO credential as part of
their employees’ MFA process [75, 158], first companies like Shopify, Kayak, and Instacart have
already integrated passkey support into their customer-facing applications [15, 120, 188].

12written in lowercase, like password

17

2.1 Means of Authentication 2 RELATED WORK

As Google rolled out passkey support to all Google accounts in the first quarter of 2023 [33],
early data13 suggests significant UX improvements compared to password-based authentication.
Convento et al. suggest that passkey authentication has a significantly higher success rate of
63.8% compared to 13.8% for password-based authentication. While the average time it takes
users to login with a password is 30.4 s, on average it only takes them 14.9 s using passkeys [52].

2.1.7. Conditional Mediation

As mentioned before, WebAuthn allows for two modes of operation: A FIDO credential can be
used as a second factor in an MFA context, or as a single passwordless factor [32]. The former
use case has seen comparatively wide adoption, while the latter is virtually never available in the
real world – despite the unique feature of phishing-resistance [166]. Within the scope of the latest
published version of the WebAuthn specification, it is impossible for relying parties to detect
whether a FIDO credential is available on a client [32]. This is by design, because disclosing
this information to relying parties would impair user privacy [166]. However, relying parties
do not want to worsen UX by performing a WebAuthn request if there is a good chance for a
visible error to appear in the client’s user interface (UI) since no credentials were available [166].
Websites may add a button to their website to let users manually trigger a WebAuthn API call,
which would burden and potentially confuse users. Additionally, Satragno and Hodges found
that implementers were unsure how to label said button, since users may know their platform-
specific authenticator’s name (e.g., Windows Hello on Windows or Touch ID on iOS) but not
the technical, cross-platform terms WebAuthn or FIDO2 [166].

Figure 1: WebAuthn Conditional UI

The latest editor’s draft of the WebAuthn specification introduces conditional mediation to fix
this UX issue [101]. Along with the technical concept, user agents like Chromium and Safari
added support for the user-facing Conditional UI [106, 166]. An example in Safari on macOS is
shown in fig. 1. Conditional mediation allows users to select from a list of discovered credentials
when focusing on an input field within a sign-in form without the website being aware of the
credentials’ existence until the user chooses to authenticate with them. This behavior is similar
to a password manager’s auto-fill functionality.

Listing 4 shows a minimal WebAuthn call using conditional mediation. Implementers can use a
new static isConditionalMediationAvailable() method (lines 1-2) to test whether a user agent
supports conditional mediation [101]. If it does, a navigator.credentials.get() call can be
made using the mediation configuration value conditional (line 8) [101]. The resulting promise
only returns if the user actively selects a credential discovered by the client and possibly unlocks
it using a PIN or biometrics. When no credential is found, or the user dismisses the conditional
UI, the promise is never resolved [101, 166]. Timeout values should hence be ignored [166].
Thus, the API call can be invoked when the login page has loaded because it does not fail

13March - April 2023, N ≈ 100M

18

2 RELATED WORK 2.2 Distributed Web Crawlers

visibly while user privacy is preserved with silent errors [166]. In certain scenarios, for instance,
when reauthenticating a known user to perform a risk-bearing action (e.g., changing account
preferences), an RP may set the allowedCredentials property to filter discovered credentials
to the ones associated with the currently signed-in account [166].

Listing 4: Conditional UI JavaScript Example (Adapted from [166])
1 if (!PublicKeyCredential.isConditionalMediationAvailable ||
2 !PublicKeyCredential.isConditionalMediationAvailable()) {
3 // Conditional UI is not supported by the browser.
4 return;
5 }
6
7 navigator.credentials.get({
8 mediation: 'conditional',
9 publicKey: {

10 challenge: randomStringFromServer,
11 // `allowCredentials` can be used to filter results,
12 // e.g. if user has to reauthenticate.
13 }
14 });

To allow the user agent to show the conditional UI on the correct input fields, implementers can
add the HyperText Markup Language (HTML) autofill webauthn token, for example, to existing
username and password input fields. An example is shown in listing 5. Using the autofill token,
RPs can gradually roll out passkey support to their users without cluttering their authentication
UI and possibly confuse users. In regard to UX, users can be introduced to the use of passkeys
through a familiar interface [166].

Listing 5: Conditional UI HTML Example (Adapted from [166])
1 <label for="name">Username:</label>
2 <input type="text" id="name" name="name"
3 autocomplete="username webauthn">
4
5 <!-- Could be ommitted eventually if only passwordless authentication was supported. -->
6 <label for="password">Password:</label>
7 <input type="password" id="password" name="password"
8 autocomplete="current-password webauthn">

2.2. Distributed Web Crawlers
Apart from available and commonly used means of authentication, the second theoretical foun-
dation for this thesis is research on crawling the WWW. This section presents various web
crawler architectures described in the literature and their shared and distinctive concepts.

2.2.1. Use Cases

Web crawlers have a wide range of applications in various fields. One of the most notable uses
is in search engines, which collect and organize (HTML) documents to enable users to query
for specific content [37, 142]. Similarly, crawling can be used for archiving purposes where
parts of the web are regularly downloaded and archived to ensure the permanent existence and
availability of information [142]. The best-known example is the non-profit organization Internet

19

2.2 Distributed Web Crawlers 2 RELATED WORK

Archive, which open-sourced its custom crawling engine Heritrix [94, 118]. Another use case is
the uptime monitoring of a web service. Businesses may want to ensure the constant availability
of their website from different continents or get notified if a Transport Layer Security (TLS)
certificate’s expiration is pending. Lastly, an important application of web crawlers is data
mining [142]. The extraction of data from a website may be used for a variety of applications.
For example, services may provide notifications for users when the price of a product available
at an online shop drops below a configured threshold. Texts from online encyclopedias like
Wikipedia are also used to train natural language processing models. In addition, data can be
used for statistical purposes, which is also the goal of this thesis.

2.2.2. Fundamentals

Before discussing various web crawler architectures described in the literature, the basic consid-
erations behind any crawler need to be introduced.

Data Structures

A web crawler typically has two data structures that determine its state. Firstly, it keeps track
of a set of discovered Uniform Resource Locators (URLs) and whether they have been visited
or not. Olston and Najork call this data structure the “URL-seen test” or the “duplicated
URL eliminator” [142]. Secondly, a set of URLs that have not yet been visited. Olston and
Najork call it the frontier [142]. The former data structure must support set addition and set
membership testing [142], while the latter must support adding URLs and selecting the next
URL to crawl [142]. For example, the URL-seen test can be implemented with a hash table or
a bloom filter [29, 142].

The simplest implementation of a frontier data structure is a First-In-First-Out (FIFO) queue [142].
However, since a significant share of hyperlinks is relative, a FIFO queue will typically contain
many consecutive URL entries containing identical domains when crawling in a breadth-first
fashion, i.e., visiting all discovered subpages before continuing with the following website [142,
146]. Sending lots of requests in a short amount of time, or even in parallel, is considered “im-
polite” and may be equivalent to a (distributed) denial-of-service attack [142]. To prevent such
behavior, web crawlers should impose politeness policies detailed in section 2.2.3.

Apart from the crawl state, the collected content is stored in a repository for subsequent exami-
nation [142]. For instance, the content may be stored in a key-value fashion, identified by a key
derived from its URL [18].

Essential Components

For a general-purpose web crawler to operate, it needs several components. Besides the afore-
mentioned URL frontier that stores a list of download targets [142], a Domain Name System
(DNS) resolver is indispensable to retrieve the responsible web server’s Internet Protocol (IP)
address [87]. Another component is needed to download content using HTTP. Next, the ob-
tained HTML document must be parsed, and any hyperlinks need to be extracted [87]. Finally,
the URL-seen test component needs to eliminate known URLs to prevent repeated visits and
possible loops [87, 142].

20

2 RELATED WORK 2.2 Distributed Web Crawlers

Crawl Ordering Problem

Because of its continuing growth and the use of dynamic14 content, the amount of crawlable web
pages can practically be considered infinite [17]. For example, for a search engine to prioritize
downloading URLs with high page rank, it needs to establish a crawling order [142]. When
defining a crawling order, two diverging goals must be weighed against each other: Coverage,
meaning the represented fraction of available pages, and freshness, i.e., how up-to-date the
collected content is kept [142]. To allow for repeated downloads of content, Olston and Najork
distinguish two approaches:

• Batched Crawling. During a crawling process, URLs are not crawled repeatedly. In-
stead, a new iteration of the process is started to obtain more recent snapshots of all
desired pages [142].

• Incremental Crawling. Crawling is a continuous process that never stops. URLs may
appear multiple times in the crawl order to refresh their content [142]. Incremental crawling
is considered more powerful because it allows for page re-visitation at different rates, which
is useful for a wide range of applications [45, 142].

Scoped Crawling

While comprehensive crawlers like general-purpose search engines may want to capture any (pop-
ular) available content on the web, scoped crawlers only consider a specific subset of pages or con-
tent relevant to their use case, which allows crawling to be significantly faster and cheaper [142].
The scope of a crawler could be based on a specific language (e.g., pages in German), a geo-
graphic region (e.g., content published in Europe), a content type (e.g., images and videos),
a page type (e.g., online shops), a topic (e.g., pages about gardening), or any combination of
other aspects [142]. Especially for data mining applications, scoped crawling can be advanta-
geous [142]. For example, an aforementioned price comparison crawler would try only to visit
online shops to extract available products and their prices.

Avoiding Troublesome Content

When building a web crawler, one needs to expect encountering content that is undesirable
or problematic [142]. While trying to prevent crawling duplicate content resulting from URL
aliases that refer to the same content or mirrored content [87] is apparent, there are other forms
of content that should be avoided. For instance, crawler traps inflate the web corpus without
information gain [87, 142]. Some crawler traps are non-malicious, for example, a web-based
appointment booking tool that uses a unique path for each month and dynamically generates
hyperlinks for the following month. This would constitute an unbound chain of dynamically
generated pages [142]. Other traps are malicious, like spammers that want to influence a search
engine’s ranking of their website by creating spam content linking to their website [142]. An-
other problem is cloaking, i.e., serving different content to web crawlers and human visitors [142].
Cloaked content is not necessarily served for malicious motives. For instance, many websites
rely heavily on the use of JS, which many web crawlers cannot interpret [142]. Thus, serving
static content without relying on JS can benefit website and crawler operators alike. However,
nowadays, a significant number of websites employ some form of bot detection to prevent things
like credential stuffing attacks, but also content scraping [47]. In fact, one of the largest vendors
for bot detection is content delivery network (CDN) provider Cloudflare, whose CDN was found
14in this context meaning generated, not client-side rendered

21

2.2 Distributed Web Crawlers 2 RELATED WORK

to be used by 52% of sites employing a CDN (29%) to serve their HTML content in the HTTP
Archive’s 2022 Web Almanac report [25]. There are many techniques used for bot detection –
some simple, like comparing a client’s User Agent [142], some advanced, like behavioral analysis
based on Machine Learning [47]. Chellapilla and Maykov studied redirection spam, which is a
form of content cloaking where false content is served on a website along with an immediate
or delayed JS-based redirect [43]. They found that around half of sites employing redirection
spam obfuscate the redirection target URL, making a static analysis challenging [43]. Instead,
they proposed the use of a light-weight JS interpreter [43]. In 2010, Olston and Najork iden-
tified dealing with client-side rendered content as one of the main upcoming challenges in web
crawling [142]. Although there are viable ways, crawling this content remains challenging and
is more resource-intensive. Section 2.2.5 discusses the means and hurdles of client-side rendered
content crawling further.

2.2.3. Politeness Policies

Because web crawlers should be good “Internet citizens”, they should behave in a polite manner
towards service providers and website operators [142]. To prevent overwhelming web servers, a
politeness policy should be defined [142]. A recent example of the failure to enact a politeness
policy was an incident where the Internet Archive repeatedly became unavailable for about an
hour at a time, after an unnamed Amazon Web Services (AWS) customer launched tens of
thousands of requests per second from 64 hosts on the virtual compute platform [102]. This
exhaustive behavior must be avoided, as it causes massive problems for service providers and
potentially prolonged unavailability for all other users.

The need for politeness was recognized early on after the WWW became publicly available. In
1994, the initial version of the Robots Exclusion Protocol was defined [111]. Today, RFC 9309
governs how crawlers are supposed to respect the wishes of website operators. It specifies simple,
grouped rules to be served in a text file reachable at the domain’s root path /robots.txt [111].
Listing 6 shows an exemplary rule set where all crawlers are asked not to download the URIs
/login and /api/. Specifically, a crawler with the user agent BadBot is asked not to visit any
page. However, the Robots Exclusion Protocol depends entirely on all parties honoring it. The
rules do not provide any form of access restriction [111].

Listing 6: Robots Exclusion Protocol Example
1 user-agent: *
2 disallow: /login
3 disallow: /api/
4
5 user-agent: BadBot
6 disallow: /

When defining a politeness policy, crawling implementers want to avoid overwhelming web
servers while also not being wasteful with their resources. For instance, WebCrawler, which was
one of the early web crawler implementations in 2000, used a breadth-first algorithm that has
the desirable side-effect of automatically creating delays between subsequent visits to a single
website, which was appreciated by server administrators [146]. However, crawlers should not
waste their computing and network resources when delaying requests in any way. Instead, other
meaningful work should be done for the duration of the delay [142]. For example, instances may
run numerous breadth-first crawling processes in parallel.

22

2 RELATED WORK 2.2 Distributed Web Crawlers

The easiest politeness policy is to not issue multiple overlapping requests to the same web
server [142]. Since, for almost any large-scale crawling task, work needs to be distributed to mul-
tiple instances, partitioning said work by the host component of URLs makes a non-overlapping
politeness policy easy because no communication between instances is necessary [142].

A more conservative, more complex approach would be to space out requests based on the web
server’s capacity [142]. For example, Heydon and Najork’s Mercator crawler utilized a delay
of subsequent requests by a multiple of the previous server response time. The multiplication
factor was called the politeness parameter and was configurable (e.g. 10× response time) [87].

2.2.4. Building for Scale

With an ever-growing WWW, developing a web-scale crawler presents significant engineering
challenges, all of which revolve around the aspect of scalability [136]. For example, if a search
engine were to index ten billion web pages and keep their content reasonably fresh with an
average update window of 4 weeks, its crawler would need to download over 4.000 pages per
second [136]. To achieve these kinds of download rates, crawlers need to be distributed over
multiple machines, with each one performing multiple downloads in parallel [136].

Some web crawler designs like Brin and Page’s early architecture for the Google crawler in
1998 distribute the work of downloading among multiple instances, while the sets of discovered
and downloaded URLs are maintained on a single machine [37, 136]. The centralization of
these major data structures is appealing because of its simplicity, but it ultimately becomes a
bottleneck, thus the scaling potential is limited [136].

Another early web crawler was Pinkerton’s WebCrawler that was initially introduced in 1994.
WebCrawler was organized into a central crawl manager and 15 crawling instances [146]. The
initial architecture did not prioritize scalability, as it used a general-purpose database manage-
ment system (DBMS) to store crawling state [146].

In 1999, Heydon and Najork presented the first version of Mercator, an incremental crawler
design blueprint that initially scaled vertically and was non-distributed [87]. Back then, machine
performance also was a significant bottleneck, as retrieved data was too big to fit in memory
entirely, which required balancing the use of hard disk and memory space [87]. Mercator was
able to download 46.3 HTML documents per second with an average page being 5 kB [87].

Edwards et al. introduced the distributed, incremental WebFountain crawler in 2001 [62]. It was
characterized by the absence of a global scheduler, global queues, or the ability for one machine
to access a global list of URLs [62]. It had three major components: machines dedicated to
downloading content called Ants, duplicate detectors, which rejected (near-)duplicates, and a
single control-plane machine named the Controller, which was responsible for tasks like routing
discovered URLs, load balancing, and monitoring tasks [62].

When Najork and Heydon presented the second, now distributed, version of Mercator in 2002, it
partitioned the URLs to crawl using their hostname component. Thus, the potential bottleneck
of a centralized set of URLs was avoided [137]. While experimenting, Najork and Heydon found
that their so-called weak politeness guarantee, where only one thread was allowed to contact
a particular web server at a time, was still considered too “rude”. Server administrators who
issued complaints were troubled that no pauses were made between subsequent requests [137].
Consequentially, Najork and Heydon built a more sophisticated URL frontier implementation
that ensured pauses between subsequent same-page requests and additionally allowed for URL
prioritization [137]. The paper argues that checkpointing, i.e., persisting task progress state to

23

2.2 Distributed Web Crawlers 2 RELATED WORK

allow for recovery in the event of an error, is paramountp for operating a long-running process
like a web crawl [137]. In their paper, the authors also presented statistics on a 17-day long crawl
that was performed in the year 2000, which had processed 891 million URLs [137]. Because of
its extensibility, Mercator was later used as a blueprint for various data mining projects [142].

In 2004, Loo et al. presented a fully-distributed peer-to-peer crawler architecture where nodes
can operate independently and are coordinated by a Distributed Hash Table (DHT) [119]. DHTs
are particularly useful for this application because of their automatic load balancing and reliable
content-based routing [119]. Each crawling instance is responsible for the URLs published in its
partition of the DHT [119]. The authors also studied different strategies for partitioning crawling
tasks and found that partitioning by hostnames and falling back to URLs as partition keys if a
crawler’s pending input queue size exceeded 500 tasks allowed for the highest throughput [119].

When Boldi et al. showcased the fully-distributed, fault-tolerant UbiCrawler that same year,
they introduced consistent hashing [103] to uniformly distribute work between crawling agents.
Each URL’s host component is used as key, while crawling agents are considered hash buckets.
A point on the unit circle is computed from the key to determine which agent is responsible. The
nearest bucket on the circle dictates which agent will crawl the URL [30]. A linear relationship
between the number of agents and the number of crawlable pages was found as a result of this
distributed coordination logic [30].

Bahrami et al.’s 2015 proposal is the first cloud-based architecture found in the literature on scal-
able web crawlers [18]. The authors’ design uses cloud computing features and the MapReduce
programming model [18, 55]. Their implementation uses the vendor-specific products offered by
cloud provider Azure [18]. The architecture is based on Azure Cloud Queue to maintain a tem-
porary list of URLs to crawl and Azure Cloud Table to persist information on crawled URLs [18].
The architecture design is not reliant on a central coordinator. Instead, a crawling agent can
start more agent instances on-demand [18]. When the crawl process starts, the Cloud-based Web
Crawler Engine (CWCE) boots the first agent instance, which creates and fetches the first URL
from the DNS Resolver. If the URL is not in the queue and has not been visited yet, it is added
to the queue and the table as an unvisited URL [18]. Azure Cloud Table is a wide-column store,
i.e., a column-oriented, NoSQL-based DBMS comparable to Google’s Bigtable [42]. Distributed
wide-column stores like Azure Cloud Table partition content between machines using a partition
key and index content using a row key. Together, they act as a primary key [18]. Bahrami et al.
use the URL’s host component as a partition key and a hash value of the URL as the row key.
That way, any content originating from one hostname is stored on the same database instance,
which makes queries faster [18]. Besides Azure Cloud Table and Azure Cloud Queue, Bahrami
et al. make use of Azure Blob Storage as an archive for large, unstructured data like PDF files,
videos, or images [18].

In the same year, Quoc et al. introduced UniCrawl, a geographically distributed crawler that
also makes use of the MapReduce paradigm [55] and is based on the architecture of Apache
Nutch [135, 149]. The workload, i.e., the “domain space”, is distributed over several geographi-
cally distributed sites, which the authors claim could reduce capital and operating expenses, for
instance, by allowing multiple small companies to share a common crawling infrastructure [149].
For storage, UniCrawl utilizes Infinispan [175], a distributed key-value store that makes use of
consistent hashing [103] and supports features like a one-hop routing design, built-in replication,
and elasticity that allows more nodes to join the ring structure [149]. In comparison with a base-
line technique where a central crawler is simply stretched over multiple locations, the authors
found UniCrawl to have a performance improvement of 93.6% in terms of network bandwidth
consumption and a speedup factor of 1.75 [149].

24

2 RELATED WORK 2.2 Distributed Web Crawlers

Prusty et al. built a horizontally scalable crawler using Docker containers and Kubernetes or-
chestration, allowing users who cannot code to commission scoped web crawls in a web-based
UI [147]. The architecture consists of a main application serving the UI and an API, which
stores data in a central MySQL database. For every job request, the main application creates
separate crawler manager container instances along with a local Redis cache container. Crawler
managers receive the list of URLs to crawl from the main application. The crawler manager in-
stances then spawn a user-configurable amount of dedicated crawler instances and supply them
with target URLs. The crawler instances use a global Redis cache to maintain a list of recently
crawled URLs to avoid unnecessary repeated visits. After crawling, the fetched responses are
stored in a cloud storage bucket compatible with the S3 API [9, 147]. The authors argued that
using a separate crawler manager instance avoided complexity problems and allowed for better
horizontal scalability [147]. Prusty et al. also compared means of crawling dynamic, client-side
rendered content, which are discussed in section 2.2.5.

2.2.5. Crawling the Dynamic Web

In 2010, Olston and Najork identified the question of how to crawl client-side generated, dynamic
content as a future direction for web crawling research that had received almost no attention,
except for one piece of preliminary work by Duda et al. [142]. Indeed, increasing adoption of
dynamic content generated by client-side JS has been an unbroken trend ever since. While
49.1% of surveyed websites did not use any JS in 2012, this share decreased to only 17.9% in
2023 [148]. Dynamic, client-side rendered content makes it hard for traditional, static crawlers
to extract relevant information from pages [60, 142, 147].

When Chellapilla and Maykov studied redirection spam in 2007, they advocated the use of a
lightweight JS parser along with a tuned execution environment for predicting whether redi-
rection behavior would occur. However, this concept of JS parser and execution environment
would only be intended to fulfill the exact use case of detecting redirection [43].

In 2008, the previously cited work by Duda et al. presented AJAXSearch, a prototypical search
engine for dynamic web content [60]. It used a breadth-first approach that triggered all available
events on a crawled page and invoked corresponding JS functions in an execution environment.
Whenever a Document Object Model (DOM) change occurred, a new state was created, forming
a (deduplicated) state machine graph [59, 60]. In comparison with a traditional crawling ap-
proach, using AJAXCrawler with cached responses was ≈ 10× slower when tested against the
YouTube website. The crawling time for 10,000 pages with AJAXCrawler was around 68h [59].
Unfortunately, no further development or usage of AJAXSearch can be found in the literature.

As previously described, Prusty et al. compared several ways of crawling dynamic web content
relevant to their Python-based technical stack [147]. The first evaluated method was PyQT [157],
a Python wrapper around the QT framework that acts as a browser and can be used to render
dynamic web content without the need for a full external browser engine. However, the authors
decided not to use PyQT because of a lack of available documentation and the inherent com-
plexity of the QT framework [147]. Another evaluated option was Splash [110], a lightweight
web browser with an HTTP API that is partly based on and abstracts the QT framework. It
is considered very fast at rendering JS pages and can be run in a Docker container alongside
one’s application. Prusty et al. ultimately decided against using it, even though it had slightly
better performance results than their chosen method. They argued that Splash would have
required adding another central containerized service to their architecture or having a Splash
container inside every crawler instance container. As both would have increased complexity and

25

2.2 Distributed Web Crawlers 2 RELATED WORK

added other undesired side effects, they ultimately chose Selenium instead [147]. Selenium [173]
is a versatile programming library with extensive community support that remotely controls a
complete web browser. Compared to Splash, it does not require running in a separate service.
The authors also note that it did not increase communication overhead within their architec-
ture, which they were trying to avoid [147]. In the end, they chose to use Selenium along with
the Chrome driver. Since they deployed a containerized crawler, deployment was as easy as
installing the Chrome package in the Docker image [147].

Apart from the described studies, though, dynamic web content crawling is still underrepresented
in the available literature, considering that 82.1% of websites use some form of JS library [148].

26

3 ARCHITECTURE

3. Architecture
This section addresses the high-level software architecture of the distributed web crawler pre-
sented in this work. First, some demand estimations for compute and storage resources are
calculated based on the defined scope and requirements. Subsequently, the distributed system
components and the crawl process design are reviewed.

3.1. Scope and Requirements
To determine whether an authentication technology like WebAuthn is used on a website (R1), the
website’s content needs to be crawled and analyzed. Specifically, all HTML and JS resources that
are included on any page that authenticates users can be considered relevant for analysis. This
means that it is not necessary to crawl, store and analyze every page of a targeted website. Thus,
a scoped crawler, as described in section 2.2.2, is appropriate for the intended application. In the
context of this thesis, a singular content corpus is needed for subsequent analysis. Therefore, it
makes sense to deploy a batch crawler15.

Section 2.2.5 mentions that a significant share of websites, 82.1% [148], use some form of client-
side rendered, dynamic content and that not being able to capture it could skew results. Several
approaches are conceivable to study the detection rate difference between a static web crawler
and a dynamic crawler capturing client-side rendered content (R2). A lightweight JS parser and
execution engine, as proposed by Chellapilla and Maykov [43], could improve content capture
quality while using compute, memory, and storage resources as sparingly as possible. However,
to get the most comprehensive picture, it is crucial to let a crawler behave as closely to a real
web browser as possible, similar to Prusty et al.’s approach [147].

As previously noted, the crawler can be scoped to only fetching HTML and JS resources on all
pages where users may authenticate on a website. Hence, a detection mechanism for whether a
linked page could authenticate users must precede subsequent visits when extracting links from
a domain’s home page. Hence, a detection mechanism as to whether a linked URL could serve
the purpose of authenticating users must precede subsequent visits when extracting links from
a domain’s home page. While the actual fetching of content requires differing implementations
for statically and dynamically crawling websites, some features, including authentication URL
detection or subsequent content analysis, may share the same software components.

To enable crawling a finite number of websites, a dataset with a limited number of domains must
be used, which at the same time is representative of the web in general. Section 4.1 details the
available data sets and their respective benefits and drawbacks. However, the size of a target
data set also impacts potential crawler architectures in terms of scalability requirements.

Since many websites are to be surveyed, the crawler needs to fetch content concurrently to
complete a crawl in a reasonable time frame. Section 3.1.1 gives some rough estimations on
a duration comparison. While many requests need to be sent concurrently, the crawler must
ensure it adheres to a politeness policy, as described in section 2.2.3, not to overload web servers
or be perceived as a disturbance.

15as opposed to an incremental crawler, see section 2.2.2

27

3.1 Scope and Requirements 3 ARCHITECTURE

3.1.1. Napkin Math

A rough estimation of some basic metrics helps define the technical requirements’ order of
magnitude. While outliers in either direction are virtually guaranteed, averaged content size
and request duration measurements from previous research provide an initial foundation for
further analysis.

Website Size

According to HTTPArchive’s 2022 Web Almanac report, the median total web page size on a
desktop is 2.3MB [93]. This includes any loaded HTML, JS, styling, and images. Due to the
defined scope, only HTML and JS responses with respective median response sizes of 31 kB and
509 kB [93] need to be persisted. This results in a median content weight w of 540 kB per page
for desktop.

Since there is no good way to estimate this without analyzing existing data, let an initial guess
for the number of URLs pg that need to be crawled per website be three. This includes the
home page itself and any authentication-related URLs the home page links to. Depending on
the actual URL detection methods, some websites may not have matched links, while others may
have dozens. Nevertheless, this guess can help to establish a rough initial order of magnitude.

Also, let the targeted domain set T have a size of 1,000,000. To investigate R2, every target
domain needs to be crawled by a static and a dynamic crawler, so C = {static, dynamic}.
Because the expected response data is text-based and shares some common patterns like typical
HTML boilerplate code, a conservative compression ratio cr of 1.5 is estimated. If every response
is stored and no de-duplication is applied, eq. (3) shows that the total corpus size sc would be
2.16TB. Consequently, this is the minimum available storage space a deployment environment
should have.

sc =
(wHTML + wJS)× pg × |T | × |C|

cr
=

(509 kB + 31 kB)× 3× 106 × 2

1.5
= 2.16TB (3)

Number of Requests and Crawl Duration

The 2022 Web Almanac also found that the median desktop page load consists of 76 individual
HTTP requests [93]. Breaking those requests down by response content type, the crawler’s scope
leads to the 22 requests for JS and 3 requests for HTML per page being relevant (rHTML and
rJS) [93]. When assuming that a content type can be inferred before a request has been made,
the remaining requests can be skipped to improve crawler performance.

The set of targeted domains T is assumed to be comprised of the most-visited websites, which
presumably value UX and thus serve content with a reasonable Time to First Byte (TTFB), i.e.,
the time passing between sending an HTTP request and receiving the first byte of the response.
Google’s Chrome developer team suggests most sites should strive for TTFB durations of 800ms
or less [187]. As a rough estimate, let every request’s latency l be 800ms. Then, eq. (4) shows
that the crawler would have to perform a total number of 150 million requests rt, assuming
three pages would have to be visited on every website (pg) and every page would be fetched by a
static and a dynamic crawler (C). If every request takes 800ms, sequential processing ts would
take over 3.8 years. Of course, it makes sense to distribute the work across multiple machines
where every machine makes several requests in parallel [142]. If i = 100 instances crawled

28

3 ARCHITECTURE 3.2 Selecting System Components

simultaneously, the process would take around tp ≈ 14 days to complete. If 200 instances were
used, the crawl would only take approx. days.

rt = (rHTML + rJS)× pg × |C| × |T | = (3 + 22)× 3× 2× 106 = 150× 106 requests
ts = rt × ls = 75× 106 × 800ms = 6× 1010 ms ≈ 1,388.9d

tp =
ts
i

tp100 =
6× 1010 ms

100
= 6× 108 ms ≈ 13.9d and tp200 =

6× 1010 ms
200

= 3× 108 ms ≈ 6.9d
(4)

3.2. Selecting System Components
The chosen crawler architecture shown in fig. 2 is inspired by Bahrami et al. [18]. Especially
the design of data structures and the content partitioning approach discussed in sections 3.3.2
and 3.3.3 are based on their proposal. One goal was to employ components that scale well
horizontally and are commonly used in cloud environments. Figure 2 shows workers, which are
crawling instances handing tasks at a sub-process level. Since they do not depend on a singular
coordination instance, the number of workers can be easily scaled horizontally by increasing the
number of workers per machine or the number of machines running in the cluster. Workers
use identical binaries and are configurable to crawl statically or dynamically with a remote-
controlled Chrome process. To receive tasks, workers listen on a task queue. Crawled content is
stored in a wide-column store. A single seeder instance is responsible for filling the task queue
with targets from a pre-compiled list of domains. To ensure uptime and proper performance, a
monitoring stack (consisting of Prometheus and Grafana) monitors all relevant instances.

Deployment Environment

Monitoring

Workers

Wide-Column Store Web

Seeder

Task Queue

Grafana

Prometheus

Worker 2Worker 1 Worker 3 Worker N

Cassandra 2 Cassandra 3Cassandra 1 example.com

Figure 2: High-Level Architecture Overview

29

3.2 Selecting System Components 3 ARCHITECTURE

3.2.1. Queueing

Najork and Heydon correctly identify recoverability (or checkpointing) as an essential part of
any long-running process like web crawling [137]. In the event of an error, a web crawler must
be able to recover and continue its work without losing large amounts of its achieved progress.
Since web crawling can be a complex endeavor, errors are likely to occur at some point. The
described architecture utilizes queue task acknowledgments to prevent tasks from getting lost
through worker failures. A queue component thus must somehow support acknowledgments to
work within the overall architecture. From the various available open-source queueing software
options, Redis and RabbitMQ were selected for closer evaluation because of their ease of use,
ease of deployment, widespread community support, and quality of available documentation.

While Redis is a simple in-memory data store, it has many use cases. For example, it may
be used as a database, cache, or message broker [162]. The benefits of Redis include a wide
range of available client libraries in various programming languages and excellent performance,
as data structures are stored in memory. Redis can also persist data to permanent storage to
survive reboots and failures. Additionally, it can be scaled horizontally based on hash-based
sharding16 [162]. Although some third-party client libraries support task acknowledgments,
Redis itself does not. Unfortunately, relying on third-party support for this architecturally
essential feature would result in dependence on younger, less widespread libraries that are not
as seasoned and well-known as Redis itself.

RabbitMQ, on the other hand, is a dedicated message broker that is widely adopted in the in-
dustry and is well-documented. It features flexible message routing, horizontal scalability, guar-
anteed message persistence, a wide range of client libraries, and delivery acknowledgement [107].
Although using RabbitMQ’s core protocol AMQP 0-9-1 is more complex, the plethora of avail-
able features and options make using it worthwhile. Particularly because of first-party acknowl-
edgment support and rerouting options for negatively acknowledged messages, RabbitMQ was
ultimately chosen for queueing crawling tasks in this architecture.

3.2.2. Data Storage

Since the permanent data storage of the crawler should not become the bottleneck of the ap-
plication, a requirement for a storage component was to be horizontally scalable. Thus, more
than one instance could ingest crawled content sent by the workers. The component should also
be able to run in any cloud environment, so Microsoft’s proprietary Azure Cloud Table used by
Bahrami et al. was not a great fit, especially because the final deployment target was not decided
on by the time the crawler’s architecture was designed. Apart from scalability, low write and
read latencies were also desirable. Traditional relational database systems based on Structured
Query Language (SQL) are mostly not designed to be scaled horizontally. They also are not
designed to store blobs of several MB in size. Due to its distributability and performance, an
open-source wide-column store similar to Azure Cloud Table that can run in any environment
looked the most promising: Apache Cassandra. Cassandra uses consistent hashing to distribute
data uniformly across a dynamically scalable number of database instances. There is no main
coordination node in Cassandra, either. Instead, every node in the cluster is identical, which
prevents single points of failure and network bottlenecks [12].

Furthermore, because the Cassandra documentation states that a blob may be up to 2GB in
size17 [53], and Bahrami et al. utilized the S3-compatible bucket storage Azure Blob Storage
16not consistent hashing
17less than 1MB is recommended, though

30

3 ARCHITECTURE 3.3 Process Design

only for large files, such as video, binary files, and images, the decision was made to refrain from
using a bucket storage component in order to reduce complexity and save all crawled HTML
content as a blob in Cassandra. Section 7.2.5 discusses why this decision caused problems later
on and is not advisable.

3.2.3. Crawling

To investigate R2, the crawling process was divided into two separate approaches: traditional
static HTTP crawling and dynamic crawling to capture client-side rendered content.

Implementing static crawling is relatively straightforward. With the right programming language
(see section 4.2.1), the built-in HTTP client can be used to directly issue HTTP requests to the
targeted website. Subsequently, one has to parse the responding HTML document to extract
directly embedded or referenced JS sources.

Dynamic crawling is more complex, as the website’s JS has to be evaluated in some execu-
tion environment. As section 3.1 lays out, mirroring the behavior of a real web browser comes
closest to how a user would interact with websites. While there are ways to partly emulate a
web browser when executing fetched JS, the best way is to utilize a full-featured web browser.
Fortunately, Chromium-based browsers support remote controlling through the Chrome Dev-
Tools Protocol [78]. The protocol allows third-party software to instrument, inspect, debug,
and profile supporting browsers. Oversimplified, one can make the browser do anything a user
could without user interaction. Several popular libraries like Puppeteer [122] use the DevTools
Protocol to remotely control a Chromium-based browser. In turn, these libraries may be used to
automatically capture screenshots, generate PDF documents, automatically perform end-to-end
user tests in a software development toolchain, or crawl Single-Page Applications (SPAs).

As all incoming and outgoing network connections can be monitored and intercepted using the
DevTools Protocol, the dynamic crawler does not need to manually extract JS URLs referenced
in HTML documents. Instead, it lets a Chromium-based browser visit the website and captures
all incoming responses, as well as the page’s rendered DOM.

The architecture anticipates the same crawler binary to be used for both static and dynamic
crawler instances. Thus, when deploying on machines that are supposed to crawl client-side
rendered content, a Chromium-based browser has to be installed alongside the binary so that
the DevTools Protocol can be used to start and remotely control a web browser instance on the
same machine.

3.3. Process Design
As section 3.1 states, the scope of the crawler is confined to a domain’s home page and subsequent
pages where users are authenticated. Letting a single worker, i.e., thread listening on a task
queue, handle a complete target domain – meaning a website’s home page and all subsequent
pages it finds links to on the home page – is a simple approach that reduces complexity. It
also allows the implementation of a straightforward politeness policy: If only one worker is
responsible to crawl a website at a time, no coordination between workers is necessary to ensure
proper rate limiting. This reduces complexity further, as no distributed locking mechanism is
needed. With proper concurrency management, workers may even add a simple waiting period
between subsequent requests to reduce stress on targeted web servers. Section 4.2.1 discusses
the concurrency management differences in suitable software stacks.

31

3.3 Process Design 3 ARCHITECTURE

3.3.1. Defining the Sequence of Operations

To satisfy R2, each target must be crawled independently using two different methods. However,
using multiple crawling methods for the same target cannot negatively impact the straightfor-
ward politeness policy described earlier. The easiest solution is to create two task queues and let
the static crawler dispatch a dynamic crawling task once static crawling of the targeted domain
is completed. The high-level order of operations for statically crawling a website is defined as
follows:

1. Get the next target domain from the task queue.

2. Fetch the robots.txt and extract possible authentication URLs that website operators
might have specified to be excluded from search engine indexing.

3. Try to visit the home page.

4. If no successful TLS connection can be established or some other error occurs, store the
error and start to work on the next task.

5. Otherwise, parse the HTML response and extract all anchor tags, e.g., <a href="/login↩
↪">Login^/a>, and script source URLs, e.g., <script src="/script.js">.

6. Store the HTML response of the home page.

7. Match anchor tags based on their label or the URL in their href attribute against a list
of possible authentication page link texts and URIs. For reference, the regular expression
patterns for authentication URLs are displayed in listing 13 in the appendix.

8. Deduplicate the URLs of all matched possible authentication URLs.

9. For each identified page, try to visit the URL.

a) Parse the HTML response and extract all script source URLs.

b) Store the HTML response.

10. Deduplicate the list of script source URLs.

11. For each script source URL, fetch and store the content.

12. Enqueue a dynamic crawling task for the targeted domain.

For the most part, the dynamic crawler performs these operations the same way. However,
there are some important differences. For instance, item 5 only partly applies to the dynamic
crawler because it skips extracting script source URLs. This step is unnecessary because it can
intercept all requested script responses in a remote-controlled web browser. Section 3.2.3 details
how interception works. Similarly, items 9a, 10 and 11 differ in that the dynamic crawler does
not need to perform the extra step of extracting and fetching script source URLs. It will also
skip fetching the robots.txt in item 2 and dispatching subsequent tasks like in item 12, as
content analysis is manually triggered later on.

3.3.2. Designing Data Structures

There are two main data stores in the crawler’s architecture. Two FIFO queues exist for crawling
websites statically and dynamically. Each crawler type listens to its respective queue to obtain
new tasks. The data structure of a task is very simple, it only contains the targeted domain. As
section 3.2 describes, the seeder fills the static crawling queue with tasks. Each task is processed

32

3 ARCHITECTURE 3.3 Process Design

by a static crawler as outlined in section 3.3.1. Then, the static crawler dispatches a new task
on the dynamic crawling queue.

Responses Errors Crawled Hostnames

Column Type Column Type Column Type

Hostname Text Hostname Text Hostname Text
Crawler Text Crawler Text Crawler Text
URL Hash Text URL Hash Text At Date
URL Text URL Text
At Date At Date
Type Text Message Text
Status Integer
Location Text
Content Blob

Primary Key: Hostname, Crawler,
URL Hash

Primary Key: Hostname, Crawler,
URL Hash

Primary Key: Hostname, Crawler

Table 3: Data Structures: Tables

Both types of crawler store the fetched content in a persistent wide-column store. Table 3 shows
the structure of the three tables used to store response content, log errors, and keep track of
crawled domains. Section 3.3.3 explains why the target URL’s hostname and a hash of the
visited URL are part of the primary key. Along with the fetched content, the crawler saves
metadata like the current timestamp, the content type, the HTTP response status code, and
the final URL location after possible redirects. An example row can be seen in table 4.

Column Key Value

Hostname PK example.com
Crawler CK static
URL Hash CK a461758d8f4e0782dfa6fe66b6cdd0023c6d6894d56b4866364795c211b780f0
URL https://example.com/login
At 2023-04-01T12:34Z
Type text/html
Status 200
Location https://example.com/user/login
Content <html> …</html>

PK: Partitioning Key, CK: Clustering Key

Table 4: Responses: Example Row

33

3.3 Process Design 3 ARCHITECTURE

3.3.3. Content Partitioning

Similarly to Bahrami et al.’s Azure Cloud Table-based approach [18], the response data structure
in this architecture uses the hostname component of a URL as the partition key. Crawler type
and URL hash are used as clustering keys18, as shown in table 4. The partition key determines
on which database instance a row will be stored, as both Cassandra and Azure Cloud Table use
a consistent hashing ring structure to distribute partitions of content. However, an important
distinction to Bahrami et al. is that the architecture in this thesis uses the target domain as the
hostname, i.e., partitioning key instead of the visited URL’s hostname component. This ensures
all content fetched from a website is stored on the same instance, resulting in faster query times
for subsequent analysis.

For instance, when crawling the URL https:^/example-sso.com/login, which was linked on
the home page https:^/example.com, the partition key would be example.com, while the URL
clustering key would be the hash representation of the visited URL.

The composition of primary keys through hostname, crawler type, and URL hash further guar-
antees that only one version of each response is stored. This desirable behavior prevents dupli-
cates if an error occurs while crawling a website. Once another worker retries the task, duplicate
content is overwritten.

However, the chosen response data structure shown in table 3 with the target domain being
the partition key has a significant downside. While it allows for faster queries, the schema also
allows for duplicate content if multiple target domains link to the same sign-in page or multiple
websites include the same CDN-hosted JS code. For example, the domains microsoft.com and
xbox.com have links to different sign-in URLs that both ultimately redirect to a URL under
login.live.com. Another, perhaps more drastic, example would be the inclusion of common
JS libraries served by CDNs, for example, at https:^/code.jquery.com/jquery-3.7.0.slim.↩
↪min.js. Although, in both cases, identical content is served, the utilized data structure causes
duplicates to be saved for every occurrence on a targeted domain. An alternative approach
would be to split up storing content and the origin relationship. A response could be saved with
the visited URL’s hostname as the partition key in a responses table. A links table could then
store the relation between the target domain as the origin and the final response location (after
redirects). The response location would then act as a reference to the content in the responses
table. This alternative approach would prevent storing duplicate content. It would reduce
query performance in the subsequent content analysis, though. Since the storage requirements
estimated in section 3.1.1 were in the range of single-digit TB values and that amount of storage
is comparatively cheap nowadays, query times were prioritized when choosing the data structure
shown in table 3.

18clustering keys in Cassandra are the equivalent of row keys in Azure Cloud Table

34

4 IMPLEMENTATION

4. Implementation
After defining the overall architecture of the crawler, this section describes the practical im-
plementation, including crawl target selection, suitable programming languages and libraries,
utilized detection methods, and improving crawler stealthiness.

4.1. Target Selection
To be able to carry out content analysis, a dataset must first be composed. To collect this data,
a list of target domains must be compiled to represent the web’s most popular sites. At the
same time, it must be clarified when a targeted domain can or must be ignored due to persisting
errors or other grounds for exclusion.

4.1.1. Comparing Domain Lists

To find the most suitable list of domains representing popular sites on the web that could be
used as a dataset for crawling, the following options were evaluated.

Alexa Top 1M Historically, many researchers have relied on Alexa’s Top 1 Million as a basis
for their studies [117, 130, 160]. While Alexa’s exact methodology remained private, they used
data from partnering browser extensions and website vendors [160]. In recent years, Alexa and
similar lists have received some scrutiny in the literature, challenging its representativeness,
stability, lack of transparency, and susceptibility to adversarial manipulations [117, 160]. Alexa
has been discontinued, with their website being retired on May 1, 2022 [10]. Hence, there are
no up-to-date Alexa Top 1 Million lists that even could be used for this thesis.

Majestic Million Majestic is a Search Engine Optimization (SEO) service provider publish-
ing the Majestic Million popularity list that is calculated based on the number of backlinks
each site has in a crawled web corpus [117, 127, 160]. Le Pochat et al. found that Majestic is
especially susceptible to manipulations by adversaries by using fake backlinks to boost the rank
of their website [117].

Cloudflare Radar As Alexa has reached its end of life, CDN operator Cloudflare started to
publish domain rankings in its Internet statistics product Cloudflare Radar in 2022 [130]. Be-
cause the Internet became more centralized in recent years, a handful of companies are seeing
large amounts of the overall Internet traffic [160]. Cloudflare is in the unique position of au-
thoritatively serving traffic for about a quarter of top sites, which is significantly more than any
other proviver [160]. In this context, it makes sense why Cloudflare can take advantage of its
market position to produce relevant statistical data. Unfortunately, Cloudflare only publishes
unordered rank buckets (e.g., top 100K, 500K, 1M) rather than a list with individually ranked
domains.

Tranco Tranco is a research-oriented list of popular websites that is hardened against ma-
nipulation. It calculates rankings based on averaging multiple available rankings over a period
of 30 days. With their approach, Le Pochat et al. achieve reduced fluctuation on list composition
and better defense against manipulation [117]. A main advantage of Tranco is its transparent

35

4.1 Target Selection 4 IMPLEMENTATION

versioning system, making research based on its lists more comprehensible and reproducible.
Every new list version is archived with its generation date and a unique ID. For instance, the
list that was generated on April 18, 2023, has the ID 3V6KL. While not the case yet, Le Pochat
et al. state they are working on incorporating the Chrome User Experience Report (CrUX) and
Cloudflare Radar rankings in Tranco [116].

In 2022, Ruth et al. evaluated the accuracy of popular website lists by analyzing traffic data
supplied by CDN provider Cloudflare. They found that the lists by Alexa, Majestic, Tranco,
and others poorly capture web popularity. Tranco performed slightly better than Alexa and
Majestic, though. Only the CrUX dataset performed notably better [160]. However, similarly
to Cloudflare Radar, CrUX only provides rank order magnitude data (e.g., Top 1K) rather than
enumerated website rank values [79, 160]. Because the volume of auditable websites within
the given time constraints of this thesis was uncertain, an individually ranked list ensured
continuous coverage of ranked websites for the number of ultimately crawled sites. CrUX also
does not provide the benefit of making research more replicable by transparently versioning and
archiving datasets. For these reasons, the Tranco list19 [117] generated on April 18, 2023, was
used for the crawl described in this thesis.

4.1.2. Handling Errors

Errors can be expected when crawling larger parts of the web. However, it is important to
recognize the difference between failures that can be recovered from and ones where recovering
is infeasible or impracticable. As section 3.2.1 describes, the crawler uses task acknowledgments
to recover from worker failures while crawling a target. For example, sudden network dropouts
or previously unconsidered states of a complex system like a remote-controlled web browser
may lead to sudden failures. These rather fatal but recoverable errors result in another worker
retrying after a timeout occurs and the queue redelivering the task.

If a worker detects a fatal error that is task-bound, it negatively acknowledges the task. The
message broker is configured to move these tasks to a dead queue. After manual examination,
possible bugs in the crawler’s software may be corrected, and tasks may be manually moved back
to the crawling queue. However, in some cases, tasks may be poisoned where errors will continue
to occur. For example, some sites may end up in a dead queue because the crawling task exceeds
a generous 10-minute timeout. Multi-stage timeouts are essential to prevent poisoned sites from
clogging up workers.

Some discovered and matched URLs may not be available, perhaps because the page does
not exist anymore and a 404 HTTP status code is returned, or an internal error occurs and the
server responds with HTTP status code 500. In these cases, it is impracticable to retry crawling.
Instead, the requested URLs are discarded, and the next page is crawled.

In all cases, error messages are logged, and a categorized monitoring counter is increased to
make accumulated errors visible in monitoring dashboards and allow for automated alerting
when configured limits are exceeded.

4.1.3. Ignoring HTTP-only

One particular error that may occur repeatedly during the crawl is a failure to establish a secure
TLS connection. Because a website must use TLS to be able to use the WebAuthn API [32],

19Available at https:^/tranco-list.eu/list/3V6KL

36

4 IMPLEMENTATION 4.2 Choosing a Software Stack

the whole domain is discarded if the home page cannot be reached over TLS. Since it is not
technically possible for the site to utilize WebAuthn if it does not use TLS, crawling, storing,
and analyzing served content would be pointless.

4.2. Choosing a Software Stack
Aside from ready-to-use system components like data stores and message brokers, custom soft-
ware is needed to orchestrate and perform crawling tasks. This section discusses multiple options
in regards to suitable programming languages and libraries.

4.2.1. Programming Languages

The choice of a suitable programming language is mainly determined by the following require-
ments. It should either have built-in functionality or a well-established library ecosystem for
parsing HTML web content and interacting with the other system components, i.e., the message
broker and the database. For efficiency’s sake, the language should be performant to avoid wast-
ing too many resources. To allow for concurrency within a single instance, it should also feature
proper concurrency management. Because the crawler is supposed to crawl dynamic web con-
tent, the language’s ecosystem should include a well-documented library for remote-controlling
a Chrome browser. The language or its ecosystem should also have broad functionality for
statistical data analysis. Finally, it should provide a good developer experience.

TypeScript, Python, and Go were considered viable options for this project. For all three
languages, AMQP libraries and Cassandra drivers are available [19, 20, 23, 36, 88, 181]. However,
the Node.js AMQP client has not received any updates for over two years [36]. For Python
and Go, there are similar HTML parsing libraries available that can handle invalid HTML
documents [105, 156], which is important when working with scraped web content. No library
of similar quality and documentation coverage could be found for working with TypeScript.
With Puppeteer and chromedp, the TypeScript and Go ecosystems provide libraries for remote-
controlling a Chrome browser using the DevTools Protocol [122, 129]. For Python, no library
that provided similar functionality could be found.

Regarding concurrency, Go has a clear advantage over Python and TypeScript. JavaScript
(and, by extension, TypeScript) is single-threaded. Node.js applications achieve some level
of concurrency through asynchronous callbacks and an event loop. Using multiple cores per
machine would require running multiple crawler instances per machine, each with a single-
threaded event loop. And while Python supports a form of threading, no real concurrency
can be achieved. Threads may run on different processors, but not at the same time. In
contrast, Go features goroutines, which can be considered lightweight threads that are managed
by the Go runtime. Because of the low cost of creating a goroutine, applications may use
numerous goroutines simultaneously. That is unlike languages using traditional threads, where
it is typically recommended to create threads equal (or double) the number of processing cores.
Thanks to a well-equipped standard library, good readability, and efficient garbage collection,
Go provides a good developer experience and excellent performance while being memory-safe.

Since Go best meets the requirements, the language was used for the development of the crawler.
For the last step – statistical evaluation of the analysis results – Python was used due to its
vibrant ecosystem in data processing and visualization.

37

4.3 Detection Methods 4 IMPLEMENTATION

4.2.2. Suitable Libraries

Because of its maturity and adequate level of documentation, the gocql library [20] is used
as a Cassandra driver. As the RabbitMQ core team maintains a first-party feature-rich and
well-documented RabbitMQ client for Go [181], it is used to communicate with the message
broker.

To parse crawled web content, the soup package [105] is used. Soup provides an interface
highly similar to the popular BeautifulSoup Python library. Like its role model, soup is able
to parse invalid and partly broken HTML documents while allowing for straightforward DOM-
traversing queries. Listing 7 shows a simplified example of querying for HTML inputs that
indicate Conditional UI support.

Listing 7: Simplified Soup Query Example
1 root := soup.HTMLParse(content)
2 if root.Error != nil {
3 // Handle error
4 }
5
6 for _, node := range root.FindAll("input") {
7 if value, ok := node.Attrs()["autocomplete"];
8 ok && strings.Contains(value, "webauthn") {
9 // Input with conditional UI reference found

10 }
11 }

Lastly, chromedp is used to drive a web browser using the DevTools Protocol [129]. Large parts
of its interface are autogenerated from the DevTools Protocol, allowing for complete feature
coverage. Using Chromdp, Go applications can do everything a developer could do manually
in their browser’s development tools. That includes performing actions like opening a new tab,
navigating to a website, pressing a button, or filling a text input field. It also includes listening
to browser events. For example, a tab’s complete network activity can be intercepted, allowing
the crawler to pause, analyze, and continue or cancel specific HTTP requests. If a suitable
browser executable is present in the deployment environment, chromedp can start and stop
browser instances as needed.

4.3. Detection Methods
The crawler needs to detect two different things: authentication URLs and utilized authentica-
tion technologies. The former is needed to identify relevant URLs on the home page of targeted
sites. The latter is needed to answer R1.

4.3.1. Authentication URL Detection

Because the crawler is scoped, it is crucial to identify possibly relevant pages. This crawler’s
approach is to match hyperlinks on home pages that could refer to secondary pages with au-
thenticating capabilities. For instance, a matched URL may serve a HTML sign-in form. By
exclusively crawling those matched URLs while ignoring irrelevant content, the crawler is able
to save on storage requirements and minimize crawl time.

There are two simplistic approaches to detecting a sign-in hyperlink: matching the referenced
URL and matching the anchor tag’s visible text label. It is important to detect the page’s

38

4 IMPLEMENTATION 4.3 Detection Methods

language so that a localized list of patterns can match any anchor tag’s text label. Otherwise,
large parts of the non-English speaking web would be strongly underrepresented. Fortunately,
valid HTML documents must include a lang attribute representing the document’s utilized
language. The corresponding language tags must adhere to the format defined in RFC 5646.
For example, fr, en-US, and de-DE are all valid language tags identifying language and, in some
cases, region [144]. Unfortunately, significant fractions of the web do not serve valid HTML
documents. The 2022 Web Almanac report shows that 18% of sites on a desktop did not have a
language set at all [132], which makes language detection difficult. Nonetheless, the crawler uses
a localized list of keywords for the most popular languages on the web identified by the Web
Almanac report [132]. For the most part, these keywords are automatically translated using the
results from DeepL20 and Google Translate21 cumulatively. If no language tag is set, the English
keywords are used for matching.

The second approach for identifying relevant anchor tags is to match their referenced URL based
on their path. Listing 8 shows a list of regular expressions the crawler uses to match discovered
URLs. To prevent undesirable content, some patterns exist that exclude URLs when they match.
This prevents crawling large files like PDF documents, images, videos, or office documents (line
17). It also prevents the crawler from re-visiting the same page if URLs contain a fragment
component referencing content within the page (line 16, e.g., https:^/example.com/#about-↩
↪us). To prevent unwanted behavior, only relative URLs or absolute URLs having the http or
https scheme are processed. Anything else is discarded, for example, opaque data with a data
scheme or scripts with a javascript scheme.

Listing 8: Including and Excluding Authentication URL Patterns
1 func (m authURLMatcher) matchURLPatterns() []string {
2 return []string{
3 `log-?in(\W|$)`,
4 `auth(enticate)?(\W|$)`,
5 `register(\W|$)`,
6 `registration(\W|$)`,
7 `account(\W|$)`,
8 `sign-?(in|up)(\W|$)`,
9 `admin(\W|$)`,

10 }
11 }
12
13 func (m authURLMatcher) excludeURLPatterns() []string {
14 return []string{
15 `^#.*`,
16 `.+\.(pdf|jpg|png|gif|psd|heic|docx?|xlsx?|csv|pptx?|aif|flac|m3u|m4a|mp3|ogg|↩

↪wav|wma|avi|flv|m4v|mov|mp4|ts|vob)$`,
17 }
18 }

An alternate approach to discovering authentication URLs is to match them in a website’s
robots.txt file. As section 2.2.3 describes, the Robots Exclusion Protocol defined in RFC 9309
governs how website operators can explicitly specify the paths they want to allow or disallow
specific robotic visitors to fetch [111]. Part of an ordinary politeness policy usually is to honor
these wishes. However, the use case of the described crawler entails crawling content that is

20https:^/www.deepl.com
21https:^/translate.google.com

39

4.3 Detection Methods 4 IMPLEMENTATION

typically not supposed to be indexed, for instance, by search engines. After careful consideration,
this thesis considers it justifiable to crawl pages explicitly disallowed by a website’s robots.txt
configuration in violation of RFC 9309 due to the crawler’s narrow scope and slowness, resulting
in minimal load.

4.3.2. Authentication Method Detection

Detecting the use of authentication technologies within fetched content is paramount for an-
swering R1. At the same time, it is a hard problem to solve. Identifying all uses of a specific
API would be impossible, thus the recognition rate will never be 100%. The first major problem
is detecting whether a client-side rendered website, essentially being a black box, has finished,
or will eventually finish, loading additional JS resources. This is a classic instance of the halting
problem, which is undecidable.

The second problem is identifying the use of a specific API within a decision tree of unknown
breadth and depth. One could try to trigger every possible combination of events to provoke
a direct API call. However, the resulting effort would be enormous, slowing down crawl times
significantly while increasing load drastically. And even then, some resources may only be
loaded, and some actions may only be performed when a website’s backend triggers a server-side
event. For example, in an MFA flow where the user initially authenticates with an email address
and a password before being prompted for a FIDO credential as a second factor, loading the
respective client-side JS code may be deferred until it is necessary.

Furthermore, JS code is frequently minified and/or obfuscated, making static analysis hard.
Listing 9 shows a few simple examples of how WebAuthn API calls may be obfuscated. Of
course, much more advanced obfuscations are conceivable.

Listing 9: Examples of JavaScript Obfuscation
1 // Typical WebAuthn API call
2 navigator.credentials.get({...})
3
4 // Unsophisticated obfuscation
5 navigator['credentials'].get({...}
6
7 // Somewhat sophisticated obfuscation (formatted for readability)
8 let d = function(a, b, c) {
9 a[atob(c) + 't' + b].get({...});

10 }
11 d(navigator, 'ials', 'Y3JlZGVu'); // = base64('creden')

To improve detection rates, one solution could be de-obfuscation and string reconstruction sim-
ilar to the Restringer project [21]. However, this approach requires considerable effort and will
likely not work in every case. Therefore, the crawler’s content analysis is limited to simple
matching techniques. They could still, for instance, detect the WebAuthn call in line 5 in list-
ing 9, but are not sophisticated enough to reconstruct strings or reverse deliberate obfuscation
tactics.

Before analyzing content, the crawler splits all fetched content for a website by content type and
applies a different set of matching rules. For HTML content, the crawler also extracts any inline
JS code that may be embedded. Specifically, the crawler is able to recognize authentication
methods using the following ruleset that is summarized in table 5.

40

4 IMPLEMENTATION 4.4 Preliminary Experiments

• Usage of the isConditionalMediationAvailable() static method of the PublicKeyCre-
dential interface is detected in JS code. If conditional mediation is available, users can
autofill discovered FIDO credentials through the browser’s non-modal Conditional UI dia-
log [131, 166]. Listing 4 contains a detectable example. Usage is evidence that the website
allows passkeys, i.e., discoverable multi-device FIDO credentials for authentication. While
it is not detectable whether additional authentication factors are required, usage of this
method is a good indicator that the website may support passwordless single-factor FIDO-
based authentication.

• In the corresponding HTML, sites may use the autocomplete="webauthn" attribute on
inputs signaling the web browser should display a Conditional UI dialog if the user focuses
on the input [166]. Listing 5 contains a detectable example. Usage is detected by traversing
the DOM tree and matching any inputs with corresponding autocomplete attribute values.

• While the previous methods detect capabilities that were only recently added to the We-
bAuthn specification with the introduction of passkeys [101], a straightforward detection
method is to match calls to the navigator.credentials WebAuthn JS API. By itself,
usage of the API is only evidence that some form of FIDO credential can be used to au-
thenticate. This may be as a second factor within a MFA flow or as a single passwordless
factor, though. However, the rule is able to detect static use of the conditional mediation
request option, indicating that the site employs passkey authentication.

• WebAuthn’s predecessor, U2F, is detected in JS by matching commonly used library im-
ports and corresponding library API calls. For example, a site’s JS code may include
require('u2f-api') or window.u2f.sign(), which would suggest they still support U2F.

• Finally, traditional password-based sign-in forms are discovered by traversing the HTML’s
DOM tree and matching any inputs that have a password type or whose name attribute
suggests it is a password input.

Rule Technique Content Type Detectable Methods

Conditional Mediation Available Regex-based JS Passkeys
Conditional UI DOM-based HTML Passkeys
Navigator Credentials API Regex-based JS WebAuthn, Passkeys
U2F Regex-based JS U2F
Password Input DOM-based HTML Passwords

Table 5: Implemented Authentication Method Matching Rules

4.4. Preliminary Experiments
Before carrying out a real-world, large-scale crawl, several small-scale tests were performed to
find potential for optimizations, catch any programming errors, and test hypotheses.

4.4.1. Unit Testing with Real Web Content

To ensure proper matching behavior, the URL and authentication technology matching compo-
nents are covered with several unit tests. While some of these tests use arbitrary examples to

41

4.4 Preliminary Experiments 4 IMPLEMENTATION

check that the code behaves as intended, others verify that matching works on real web content.
For URL matching, 62 extracts were gathered from samples of the top 200 domains on the Tranco
list described in section 4.1.1. The samples include Adobe, Dropbox, Ebay, Microsoft, Netflix,
Reddit, The Guardian, Twitter, Wikipedia, and YouTube. These real-world HTML extracts also
help to ensure localized matching with automatically translated labels works as intended. For
instance, test cases for mail.ru, qq.com, and baidu.com verify that the extracted text labels in
Russian and traditional Chinese are matched correctly.

4.4.2. Sitemap Authentication URL Extraction

In 2010, Olston and Najork listed the collaboration between content providers and crawlers as
a relevant future field of crawler research, mentioning that many sites use the Sitemap Proto-
col to publish a machine-readable list of available content [142, 169]. To increase coverage of
authentication pages, fetching sitemaps and matching referenced URLs sounds promising.

However, after manually inspecting sitemaps from a sample of the top 200 domains on the Tranco
list described in section 4.1.1, it became clear that most websites only publish URLs referencing
content they want to see indexed by search engines, for example, blog articles or product pages.
Unfortunately, URLs to sign-in forms were rarely found in the sampled sitemaps. Thus, sitemap
crawling was omitted in favor of other, more promising approaches.

4.4.3. Optimizing Chrome Crawling Performance

Compared to the static crawler using a simple HTTP client included in Go’s standard library,
crawling using a Chrome browser carries a significant performance penalty. However, the dy-
namic crawler implementation uses several methods to optimize crawling performance and im-
prove task throughput.

Reusing Instances and Its Tradeoffs

Typically, it is desirable to crawl a website without any preexisting state that could influence
the resulting content. Simply put, every task should be started with a clean slate. However,
crawling dynamic, client-side rendered content using a web browser like Chrome brings significant
performance penalties when a fresh browser instance is started for every crawling task. Starting,
stopping, and clean-up phases add up to multiple seconds per occurrence. Crawling every
individual page with a fresh Chrome instance would therefore be unfeasible. Even starting a
fresh instance per crawling task (targeted website) is way too cost-intensive.

When a browser process is reused for multiple crawls, there are two potential negative effects:
previous state affecting future content and disk clogging or memory leaks. When a browser
collects browsing history, most visited websites store some state within cookies. They may also
persist data in the browser’s local or session storage. This previous state can influence servers
to behave differently, for example serving altered or alternate content compared to the response
a new visitor would receive. Moreover, using a browser instance over a prolonged period of
time may cause the disk to be clogged by temporary files that are not cleaned up after a page
visit. As a web browser is a fairly complex software, it may also suffer memory leaks that fill
up Random Access Memory (RAM).

Ultimately, these tradeoffs must be accepted if the alternative of starting a fresh browser in-
stance for every request or task is not feasible. While disk space leakage can be handled, as

42

4 IMPLEMENTATION 4.4 Preliminary Experiments

section 7.2.1 discusses, possible content changes due to previous state are not traceable and
cannot be prevented, although it is estimated that the consequences are only minor regarding
this work’s use case.

Tabs vs. Windows

While reusing a Chrome instance for a prolonged period of time provides significant benefits in
crawling performance, further optimizations need to be made. While a static crawler instance
can use many goroutines to start workers and fetch content concurrently, a dynamic crawler
instance would need exorbitant amounts of RAM and Central Processing Unit (CPU) cores to
host individual Chrome instances per worker goroutine. Fortunately, chromedp allows concurrent
use of a single browser instance by multiple worker goroutines. This begs the question of the best
way for workers to use one Chrome instance concurrently: Should they open separate windows
or tabs within a single window?

Chrome is a multi-process application that uses a Site Isolation architecture to protect users’
privacy and reduce the attack surface for transient execution attacks like Spectre and Melt-
down [154]. The architecture effectively provides a sandbox for every site by locking each ren-
derer process to its own documents [154]. Hence, not just every window but every tab visiting
a separate site is rendered within its own process isolated by the operating system [154, 155].
One would assume that sandboxing does not entail any differences in the amount of separate
processes.

100× Same Site Tranco Top 100

Tabs Windows Tabs Windows

Memory usage 13.38MB 42.21MB 10.93MB 39.91MB
Processes 87 802 90 770

Table 6: Chrome Tabs vs. Windows Measurement Results

However, experimental measurements suggest a difference in memory usage and process count
between using multiple tabs and multiple windows. Two separate experiments were performed
to study the differences Site Isolation may introduce. In the first experiment, one site22 was
concurrently visited 100× using multiple tabs and then multiple windows. In the second ex-
periment, the top 100 sites on the Tranco list23 [117] generated on February 22, 2023, were
concurrently visited using multiple tabs and subsequently multiple windows. Both experiments
were conducted on a machine with an Apple M1 Pro System on a Chip (SoC) and 32GB of
available RAM running macOS Ventura and Chrome 110.0. Table 6 shows that using windows
instead of tabs resulted in over three times the memory pressure in both experiments. The
number of running Chrome processes increased by a factor of ≈ 9 when using windows. In
a nutshell, while the effects of Site Isolation are negligible, using tabs for concurrent crawling
provides significantly better performance.

22https:^/www.hdm-stuttgart.de
23Available at https:^/tranco-list.eu/list/LYVG4

43

4.5 Avoiding Crawler Detection 4 IMPLEMENTATION

Blocking Media To Save Bandwidth

Another utilized measure to optimize crawling performance is intercepting a page’s network
traffic and pausing all fetch requests. This allows the crawler to analyze outgoing HTTP requests
before the web browser sends them to the network. Listing 10 shows a simplified code excerpt
of how the crawler uses this capability to block all HTTP requests for undesired content like
images, videos, font files, or stylesheets. Thereby, unnecessary network traffic is prevented,
which allows for higher throughput of relevant content.

Listing 10: Simplified Media Blocking Code Excerpt
1 func (c Crawler) reviewRequest(ctx context.Context, ev *fetch.EventRequestPaused) {
2 ...
3
4 blockedResourceTypes := []network.ResourceType{
5 network.ResourceTypeImage,
6 network.ResourceTypeMedia,
7 network.ResourceTypeFont,
8 network.ResourceTypeStylesheet,
9 }

10
11 if slices.Contains(blockedResourceTypes, ev.ResourceType) {
12 return fetch.FailRequest(ev.RequestID, network.↩

↪ErrorReasonBlockedByClient).Do(ctx)
13 }
14
15 return fetch.ContinueRequest(ev.RequestID).Do(ctx)
16 }

4.5. Avoiding Crawler Detection
For several years now, an arms race is taking place between crawler and website operators – and
both sides have valid arguments. On the one hand, web crawling is essential for many businesses
and researchers alike. On the other hand, some crawlers act inconsiderately or even in bad faith.
For instance, in 2023, aggressively scraping large amounts of data provided by the non-profit
Internet Archive has repeatedly interrupted their availability [102]. Many businesses also face
problems like stolen, unattributed content or malicious attacks like spamming or phishing that
take place over the web. While there are valid reasons for trying to prevent undesired bot
interactions, overblocking negatively affects legitimate use cases like Internet research.

Constantly, new bot detection techniques are being deployed and crawling operators try to find
circumvention methods. For example, some sites may try to detect automated visits by analyzing
a client’s user agent, permissions (e.g., for notifications), list of enabled plugins, supported
languages, or its ability to draw an image on a canvas [163, 164]. Of course, workarounds for all
of the mentioned detection techniques already exist [163]. A somewhat popular bot detection test
is available at https:^/bot.sannysoft.com. The site creates a report on a client’s performance
in various detection scenarios. For instance, in 2018, Sangeline used it to demonstrate how all
included tests can be circumvented by injecting some JS code into the browser before visiting
the testing site [163].

44

4 IMPLEMENTATION 4.5 Avoiding Crawler Detection

Optimizing Chrome Stealthiness

Fortunately, a stealth plugin for the Node.js library Puppeteer, which is mentioned in sec-
tion 4.2.1, exists that successfully evades all publicly available bot tests by injecting JS code
into the browser before a page visit [83]. This code patches several browser APIs to produce
unsuspicious outputs. For example, the code leads website operators to believe a particular set
of plugins was installed in the browser by creating mock functions and patching the respective
browser API [83].

The evasion rules made available by the Puppeteer stealth plugin [83] are compiled and used to
implement a dynamic crawler stealth mode, optionally configurable using a feature flag. Figure 3
shows an excerpt of the bot test results for the dynamic crawler running on a Debian Virtual
Machine (VM) in the final OpenStack-based deployment environment. The machine does not
have a graphical UI, and Chrome is operated in Headless mode, so naturally fig. 3a features some
suspicious test results. With enabled stealth mode, Figure 3a exhibits an improved behavior for
the WebDriver and WebGL Renderer tests. Note that the missing Hairline Feature result also
occurs in “headful” Chrome, and its absence is not critical.

(Old)

(New)

(New)

(New)

(Old)

(Old)

Result

User Agent Mozilla/5.0 (X11; Linux x86_64)AppleWebKit/537.36(KHTML, like Gecko)Chrome/112.0.0.0
Safari/537.36

WebDriver present(failed)

WebDriver Advanced passed

Chrome present (passed)

Permissions prompt

Plugins Length 5

Plugins is of type PluginArray passed

Languages en-US,en

WebGLVendor Google Inc. (Google)

WebGLRenderer ANGLE (Google, Vulkan 1.3.0 (SwiftShaderDevice (Subzero)(0x0000C0DE)), SwiftShader driver)

Hairline Feature missing

Broken Image Dimensions

(a) Stealth Options Disabled

(Old)

(New)

(New)

(New)

(Old)

(Old)

Result

User Agent
Mozilla/5.0 (X11; Linux x86_64)
AppleWebKit/537.36(KHTML, like Gecko)
Chrome/112.0.0.0 Safari/537.36

WebDriver missing (passed)

WebDriver Advanced passed

Chrome present (passed)

Permissions prompt

Plugins Length 5

Plugins is of type PluginArray passed

Languages en-US,en

WebGLVendor Intel Inc.

WebGLRenderer Intel Iris OpenGLEngine

Hairline Feature missing

Broken Image Dimensions

(b) Stealth Options Enabled

Figure 3: Results of Sannysoft Bot Detection Test24

New Chrome Headless Mode

When Chrome first introduced a Headless mode, which lets developers run the browser unat-
tended without any visible UI, it ran on an entirely different implementation. “Headful” and
Headless Chrome did not share any code, which resulted in differing behavior, separate environ-
ments where bugs may occur, and additional maintenance overhead [26, 41]. In 2023, Chrome
introduced a new Headless mode that shares a code path with the “headful” Chrome browser.
This guarantees uniform behavior and the availability of all existing and future functionality in
Headless mode [41].

In combination, by injecting stealthiness JS code into the Chrome browser and using the new
Headless mode, which shares the same code with its “headful” counterpart, the dynamic crawler
is supposed to appear to site operators as much as possible like an ordinary visitor. Of course,
this is a cat-and-mouse game where sophisticated operators such as prominent CDN vendors may
still detect and block automatic crawling through novel techniques enabled by unique market
positions, allowing them to automatically analyze large parts of all Internet traffic.
24Available at https:^/bot.sannysoft.com

45

5 DEPLOYMENT

5. Deployment
This section describes how the implemented web crawler was deployed into an OpenStack envi-
ronment. It also discusses some workarounds that had to be used due to the peculiarities of the
deployment environment. Furthermore, the deployed storage and queuing components are load
tested to determine the proper resource sizing. Finally, the optimization evolution of deployed
crawler instance specifications is reviewed.

5.1. Automated Deployment
Creating a fully-automated and reproducible deployment environment is achieved through a
combination of cloud infrastructure provisioning using Terraform [86] and deployment automa-
tion using Ansible [48]. Because only common open-source cloud components are used, the
deployment is theoretically adaptable to any cloud environment without any vendor lock-in. As
part of this thesis, the distributed crawler was deployed to the OpenStack-based bwCloud25,
which is a state-run Infrastructure as a Service (IaaS) provider for public science and education
institutions within the German federal state Baden-Württemberg. While it is commendable that
the state provides this service, Sections 5.3, 6 and 7.2.1 discuss several problems that specifically
arose as a result of relying on bwCloud.

Terraform

Terraform is used to provision the needed infrastructure through bwCloud’s OpenStack APIs.
The Terraform modules create block storage resources, respective attachments, security groups,
and compute resources of configurable amount and flavor, i.e., available combinations of VM
specifications like CPU cores and available RAM. Throughout the crawling process, this flexibil-
ity allowed continuous adjusting of the ratio of dynamic and static crawler instances to optimize
for similar throughput rates. Section 6.1 covers this in detail.

The fact that bwCloud only supports block storage but currently does not provide any object
storage also influenced the decision to store crawled content entirely in a wide-column store
addressed in section 3.2.2. Otherwise, deploying a custom object storage service on dedicated
compute and block storage resources would have been necessary.

Aside from provisioning infrastructural components, Terraform is also used to create inventory
files of the created compute resources for subsequent configuration using Ansible. This way, the
integration of both tools is seamless, and a complete provisioning and deployment process can
be fully automatable.

Ansible

After provisioning VMs with a Debian 11 image using Terraform, an Ansible playbook is executed
on the hosts listed in the generated inventory file. Different groups separate the hosts so that
separate Ansible roles can be applied to each host group. Every deployed capability is configured
within a dedicated Ansible role, so some configurations can be applied to all hosts, while others
only apply to a specific group. For example, utilities like the network speed measurement tool
iperf3 and a monitoring data exporter are installed on every host, while the Chrome package
is only installed on dynamic crawler instances. Ansible is also used to mount the provisioned

25https:^/www.bw-cloud.org

47

5.2 Monitoring 5 DEPLOYMENT

block storage on hosts that need to store persistent data. Because the Terraform and Ansible
configurations are both designed to be idempotent, changes can be made to the deployment
without needing to recreate a fresh environment.

Overall, Terraform and Ansible are used to deploy a Cassandra cluster, a RabbitMQ instance,
several static and dynamic crawler instances, and a dedicated monitoring instance. The in-
stances hosting Cassandra, RabbitMQ, and a monitoring stack also have persistent block stor-
age available. Due to the peculiarities of the deployment environment discussed in section 5.3,
a NAT64 gateway in a separate location is deployed additionally to ensure the crawlers have
proper dual-stack connectivity.

5.2. Monitoring
To monitor all relevant software components within the deployment, a combination of Prometheus
and Grafana is used [140, 153]. Prometheus collects various metrics from exporting services on
the monitored nodes by scraping their HTTP endpoints in intervals of 15 s. To instrument the
VMs, the first-party node-exporter program is installed directly on the hosts. In terms of
architectural components, there are differing approaches for instrumentation.

While RabbitMQ comes with a plugin that directly exposes a dedicated HTTP endpoint for
Prometheus metrics, monitoring Cassandra is slightly more complex. Since Cassandra is built
using Java, it relies on instrumentation via Java Management Extensions (JMX). Fortunately,
the community around Prometheus has created JMX Exporter [35], which is a collector that
can scrape JMX Bean targets. However, proper integration and configuration are not well-
documented and, at least in this particular instance, was somewhat challenging.

For the developed crawler software, custom metrics are collected using the Prometheus Go
client [150]. They are exposed on a dedicated HTTP endpoint with Go’s standard library
HTTP server. To allow for application-specific instrumentation, Prometheus collects metrics
like the total number of jobs per type of crawler (static or dynamic). It also collects counters
for errors, outgoing HTTP requests, incoming HTTP responses, and respective HTTP status
codes. Furthermore, it measures the duration of database and queue operations and outgoing
HTTP requests. The number of discovered authentication URLs per website and the number of
currently active workers are tracked, too.

For every aforementioned metrics exporter, a dedicated HTTP endpoint allows employing secu-
rity measures at a network level by restricting connections by their source IP address. In this
case, only the monitoring host is allowed to establish a Transmission Control Protocol (TCP)
connection to the metrics endpoint, while any other connection attempts are discarded.

5.3. Peculiarities of the Deployment Environment
Relying on bwCloud to deploy the crawler resulted in several problems. This section outlines
issues caused by Internet Protocol version 4 (IPv4) address space exhaustion affecting the region
of the assigned OpenStack tenant. It also describes methods used to overcome these issues.

5.3.1. IPv6-Only Connectivity

As the available IPv4 address space within in the assigned bwCloud location Mannheim is cur-
rently exhausted, all hosts within the deployment only had Internet connectivity through In-
ternet Protocol version 6 (IPv6). This was problematic because large parts of the Internet still

48

5 DEPLOYMENT 5.3 Peculiarities of the Deployment Environment

rely on IPv4-only connectivity. If the web is to be surveyed, a crawler must be able to connect
to those web servers only available via IPv4. For instance, at the time of writing, Stuttgart
Media University’s entire network cannot route any IPv6 packets, rendering communication
between the deployment environment and the university network impossible. To solve this is-
sue, a NAT64 gateway detailed in section 5.3.2 was deployed in another bwCloud location. The
gateway provided a tunnel for communicating with IPv4-only hosts.

What worsened the situation was that hosts in bwCloud’s Mannheim region actually had dual-
stack networking. However, the private class A IPv4 network (10.0.0.0/8) did not route any
packets to the Internet. This caused any software preferring IPv4 connections to be unable to
communicate with hosts on the Internet. After discovering this behavior repeatedly, the removal
of all IPv4 routes from the provisioned hosts was ultimately added to the Ansible deployment
as part of the necessary mitigation.

Unfortunately, IPv6 still does not enjoy the same level of application support as IPv4. For
example, Docker’s IPv6 support is still experimental [57]. This is one of the reasons why
containerization was not used in this particular deployment, although all components can be
containerized. While some software like RabbitMQ requires additional configuration effort to
enable IPv6, the crawler’s Java-based software components Cassandra and JMX Exporter needed
to be actively prevented from preferring the IPv4 stack and ignoring their IPv6 connectivity after
IPv6 was already configured.

5.3.2. NAT64 Gateway

A NAT64 gateway facilitates communication between IPv6 and IPv4 hosts by using a form of
Network Address Translation (NAT). To allow hosts in the Mannheim deployment region to
communicate to IPv4 hosts on the Internet, the out-of-kernel stateless NAT64 implementation
TAYGA was used [123]. It creates a tunnel network for each IP version and acts as a router
within both networks, translating destination IP addresses back and forth. IPv6 hosts can route
packets to their final IPv4 target by addressing it to a translated address within the well-known
64:ff9b^:/96 NAT64 prefix. The IP packet needs to be routed to the NAT64 gateway, which
translates the destination address to IPv4 and routes the packet to its next hop on an IPv4
network. In fact, the IPv6 host does not need to know about the existence of the IPv4 address
at all.

Instead, when hosts try to resolve hostnames using DNS, they should only receive AAAA records
with IPv6 addresses, even when a hostname only has an A record available. A DNS server
can accomplish this using DNS64. In the described deployment, the widely-used DNS server
BIND 9 [96] is configured to respond to hostname queries with AAAA records, even when none
originally exist. In such a case, BIND 9 is configured to translate the IPv4 addresses from any
A records into IPv6 addresses within the well-known 64:ff9b^:/96 NAT64 network and serve
them as AAAA records.

All hosts in the Mannheim deployment region are configured to route packets with a destination
address within the well-known NAT64 network to the NAT64 gateway located in bwCloud’s Ulm
region. This behavior is set using a Wireguard Virtual Private Network (VPN) configuration,
which is required for secure communication anyway.

Unfortunately, communication over a NAT64 gateway is limited by the gateway’s maximum
throughput. To assess the negative performance impact of NAT64 tunneling, a speed test
was performed using an iPerf [61] client. The 10Gbit/s iPerf server publicly available at

49

5.4 Load Testing Components 5 DEPLOYMENT

ping.online.net and ping6.online.net was used as a counterpart in both tests. All provi-
sioned hosts in both bwCloud regions have a theoretical network connection of 10Gbit/s. When
performing an iPerf test over IPv6, the data rate was ≈ 950Mbit/s in both directions, which
roughly corresponds to the theoretical maximum. When running iPerf over the NAT64 tunnel,
the data rate in both directions is reduced to ≈ 365Mbit/s. That is only 38% of the original
throughput. Of course, the theoretical data rate maximum is half of the gateway’s network
connection. Any additional reduction is presumably caused by the involved address transla-
tion overhead. While this significant performance penalty is indeed unfortunate, using NAT64
is the only viable solution to allow connections to IPv4 hosts in this particular deployment
environment.

Because it became necessary to explore IPv6 address translation, an additional metric was added
to the crawler, which collected data on the adoption of IPv6 among visited sites. Section 6.1.1
discusses the observed results.

5.3.3. Mesh Virtual Private Network

Because bwCloud provided an OpenStack tenant without the ability to create private networks
or network routers, which are basic functionalities typically provided by one of OpenStack’s core
components, a VPN was used to provide a secure communication tunnel between deployed hosts.
Wireguard [58] was used to create a private mesh VPN because its peer-to-peer connectivity
and adequate performance were desirable.

At the provisioning stage, Terraform assigns an incrementing Unique Local Address (ULA) in
the address range fc00^:/7 to every compute resource and outputs it into the host inventory
files parsed by Ansible. At the deployment stage, Ansible creates an asymmetrical key pair
for every possible host pair combination. It also creates pre-shared symmetrical keys for every
host pair for additional security. If matching keys exist on the target machine, key generation is
skipped to ensure idempotence. Ansible utilizes a Jinja template to produce a unique Wireguard
configuration for each VM in the deployment. This includes registering all peers, generated keys,
the assigned ULA, and the corresponding Wireguard endpoint. The endpoint consists of the
peer’s public IPv6 address and the User Datagram Protocol (UDP) port where the Wireguard
client is listening. This setup allows for secure communication through a private, tunneled IPv6
network.

The Wireguard configuration specifies the NAT64 gateway peer’s ULA as the next routing hop
for the 64:ff9b^:/96 NAT64 network. It also configures all hosts to use the NAT64 gateway as
a DNS server, where BIND 9 provides DNS64 services.

5.4. Load Testing Components
The assigned bwCloud OpenStack tenant has a quota of 20 compute instances, a total of 80
virtual Central Processing Units (vCPUs), 120GB of RAM, and 3TiB of available block storage.
To ensure the optimal distribution of available resources, several load tests were performed on
the internal crawler components. Specifically, sufficient capacities for Cassandra and RabbitMQ
needed to be provided, while as many resources as possible should remain available for the
actual crawler instances. Moreover, due to the limited number of available instance flavors,
which determine a VM’s vCPUs and RAM combination, not all quotas could be used to their
full potential.

50

5 DEPLOYMENT 5.4 Load Testing Components

The regular dynamic and static crawler instance deployment is used to provision load test clients
to make the load tests as realistic as possible. Thus, the same number of instances with the
same resource limits will also be used in the crawling process.

5.4.1. Cassandra

The load tests were designed to determine whether it would be better to provision three smaller
Cassandra instances that divide their workload equally or a single large instance that eliminates
cluster communication overhead. However, all instances had a network connection limited to
1Gbit/s, which might be insufficient when using a single Cassandra instance.

During each load test, each concurrent worker of a client instance repeatedly stores exemplary
HTML documents. The configured number of concurrent workers per client instance is increased
over time with the goal of overstraining the Cassandra instances.

Load Test 1

The first load test used three Cassandra instances with 4 vCPUs and 8GB of RAM each. Table 7
details the remaining instance specifications.

Name Instances Flavor vCPUs RAM

Cassandra 3 m1.large 4 8GB
Dynamic Crawler 6 m1.large 4 8GB
Static Crawler 7 m1.medium 2 4GB

Table 7: Instance Specifications for Cassandra Load Test 1

During the first load test, the number of concurrent goroutines on each of the 14 client instances
was gradually increased using the following steps: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20,
25, 30, 35, 40, 50, 70, 100, 150, 200, and 400. Figure 4a shows that the CPU usage on all three
Cassandra instances increased fairly quickly, plateauing at ≈ 95% after reaching ten concurrent
workers per client instance (16:30 in fig. 4a). However, no errors occurred until 400 concurrent
workers per instance were reached. Figure 4d shows that the duration of storing operations
increased roughly linearly until the number of workers per instance reached 200.

After that point, the duration more than doubled. At the same time, the number of Cassandra’s
pending tasks displayed in fig. 4c started to increase noticeably. Finally, at 400 workers per
instance, the duration of store operations increased drastically from ≈ 250ms to ≈ 880ms per
operation. The pending tasks increased exponentially, peaking at over 300. Workers started to
receive errors when trying to insert records at that time. Hence, the number of 400 concurrent
workers per instance can be regarded as the threshold at which the cluster of three Cassandra
instances with an m1.large flavor is overstrained.

Figure 4b shows the network traffic on the first Cassandra instance, which peaked at 446Mbit/s.
The other two instances had maximum throughputs of 428Mbit/s and 309Mbit/s. In purely
arithmetical terms, a cumulative maximum of 1,183Mbit/s would mean that a single, larger-
sized Cassandra instance had insufficient bandwidth, with the network link potentially becoming

51

5.4 Load Testing Components 5 DEPLOYMENT

a bottleneck. Yet, this may be compensated by the removal of possible communication overhead
between Cassandra instances.

(a) CPU Usage – cassandra-1

(b) Network Traffic – cassandra-1

Figure 4: Cassandra Load Test 1

52

5 DEPLOYMENT 5.4 Load Testing Components

(c) Pending Tasks – cassandra-2

(d) Crawler Operation Duration (P99)

Figure 4: Cassandra Load Test 1

Load Test 2

For the second load test, only a single Cassandra instance with 16 vCPUs and 32GB of RAM
was used, along with the same client specifications listed in table 8. In theory, if a singular,
more powerful Cassandra instance was superior, it should reach or surpass the threshold of 400
concurrent workers per client instance, which was found in the first load test. Unfortunately,
the worker’s error rate sharply increased with only two concurrent workers per client instance.

However, the Cassandra instance did not reach any computing or memory limits. The CPU
usage maxed out at 62%, while only 20 of the available 32GB were used. During the test,
network throughput on the Cassandra instance reached a maximum of 831Mbit/s, which is
visualized in fig. 5a. The net throughput rate within the Wireguard tunnel peaked at 795Mbit/s.

53

5.4 Load Testing Components 5 DEPLOYMENT

Interestingly, the TCP error rate in fig. 5b correlates with sudden drops in network throughput
that can be seen in the last quarter of fig. 5a.

These results indicate that the network link, indeed, is a bottleneck. While the exact cause
was not investigated any further, it is conceivable that either performance limitations of the
Wireguard VPN tunnel or the larger number of concurrent connections may be responsible.
Since the Cassandra cluster of three smaller instances achieved significant better performance,
using this setup was preferred for the crawling process.

Name Instances Flavor vCPUs RAM

Cassandra 1 m1.xxlarge 16 32GB
Dynamic Crawler 6 m1.large 4 8GB
Static Crawler 7 m1.medium 2 4GB

Table 8: Instance Specifications for Cassandra Load Test 2

(a) Cassandra Load Test 2 – Network Traffic

(b) Cassandra Load Test 2 – TCP Errors

Figure 5: Cassandra Load Test 2

54

5 DEPLOYMENT 5.4 Load Testing Components

5.4.2. RabbitMQ

For load-testing the queue component RabbitMQ, the same setup of crawler instances described
in section 5.4.1 was used to simulate an operational scenario that is as realistic as possible. With
that goal in mind, each client repeatedly published exemplary crawl job task entries to a single
queue on the message broker. The entries had the same data structure used during the crawling
process. The referenced domain names are randomly generated.

Load Test 1

Initially, the single RabbitMQ instance was provisioned with 4 vCPUs and 8GB of RAM, as
detailed in table 9. Similar to the Cassandra load tests, all clients gradually increased the
number of concurrent worker goroutines that published tasks to the queue. The following steps
in the number of concurrent workers per instance were synchronously used across all clients: 1,
2, 5, 10, 25, 50, 100, 200, 400, 800, 1,600, and 5,000.

Name Instances Flavor vCPUs RAM

RabbitMQ 1 m1.large 4 8GB
Dynamic Crawler 6 m1.large 4 8GB
Static Crawler 7 m1.medium 2 4GB

Table 9: Instance Specifications for RabbitMQ Load Test 1

Figure 6a shows an initial increase in CPU usage, but a plateau is reached around 65%. At
the same time, the number of published messages on the queue depicted in fig. 6b steadily
increased. At 800 concurrent workers per client instance, fig. 6c shows the duration of queue
publish operations beginning to increase. In the 99th percentile, the duration per operation
peaks at 5 s for 5,000 concurrent workers per client.

(a) CPU Usage

Figure 6: RabbitMQ Load Test 1

55

5.4 Load Testing Components 5 DEPLOYMENT

(b) Messages Published per Second

(c) Crawler Operation Duration (P99)

Figure 6: RabbitMQ Load Test 1

However, no errors occurred at a rate of 20,000 published messages per second. The first
RabbitMQ load test revealed that utilizing a VM with fewer available resources was justifiable
as the crawling process did not come close to this message rate.

Load Test 2

Table 10 lists the instances used in the second load test targeting RabbitMQ. This time, the
message broker was downsized to 2 vCPUs and 4GB of RAM. The same steps to increase
concurrent workers per client instance were also in the second test. In an effort to provoke an
error, after reaching 5,000 workers, the number was increased to 10,000 and 20,000 before the
load test was concluded.

56

5 DEPLOYMENT 5.5 Infrastructure Optimizations

Name Instances Flavor vCPUs RAM

RabbitMQ 1 m1.medium 2 4GB
Dynamic Crawler 6 m1.large 4 8GB
Static Crawler 7 m1.medium 2 4GB

Table 10: Instance Specifications for RabbitMQ Load Test 2

This time, CPU usage on the RabbitMQ instance plateaued at 85%, while the allocated RAM
peaked at 3.5GB. The maximum network throughput was only 41.9Mbit/s. While the increase
to 20,000 concurrent workers per instance, which resulted in a total of 280,000 goroutines, drove
up the client’s publish operation duration to 10 s, still, no error occurred. With the smaller
VM configuration, the number of published messages per second peaked at 16,000, which is still
plenty for the intended use case. Thus, the specifications of the second load test were used to
provision the RabbitMQ instance in the final crawling deployment.

5.5. Infrastructure Optimizations
This section describes the final steps before starting to crawl the web, as well as infrastructure
optimizations applied during the crawl to increase performance.

5.5.1. Cassandra Optimizations

To make sure that the block storage used by Cassandra could be expanded if the need to do
so arose due to potential off-base estimates or other issues, a final test was performed where
each block storage volume size for the three Cassandra instances was reduced to 100GiB. Then,
load-testing clients were used to fill the volumes with HTML documents containing randomly
generated content. After disk space was exhausted, all VMs were shut down, and the relevant
Terraform configuration was modified to increase the provisioned block storage volume size
to 980GiB each. Next, the Cassandra VMs were rebooted, and Ansible was used to stop all
Cassandra service daemons, expand the mounted filesystem on the block storage devices to the
newly available size, and start the Cassandra daemons. After the Cassandra cluster was fully
booted, Cassandra Query Language (CQL) queries were used to test whether the wide-column
store worked as expected. As the disk expansion test was successful, it could be assumed that
an expansion of storage capabilities would have been possible if it had become necessary.

Cassandra supports using several compression algorithms to reduce the disk footprint of stored
data. Their documentation compares the available options and gives suggestions depending on
the use case [13]. Because Zstandard, which is a relatively new development by Facebook’s parent
company Meta, has a significantly better compression ratio than LZ4, Cassandra’s documenta-
tion suggests using it over LZ4 for storage-critical applications [13, 50]. However, because of
its slightly faster compression and decompression speed, LZ4 is recommended for performance-
critical applications [13, 49]. Since section 3.1.1 roughly estimates the required storage capacity
with a conservative compression factor of 1.5, the default LZ4 ratio of 2.1 allowed for some
headroom. To optimize for store and query operation speed, the Cassandra documentation’s
recommendation of using LZ4 [13] was thus used to create all necessary tables in the CQL
schema.

57

5.5 Infrastructure Optimizations 5 DEPLOYMENT

5.5.2. Crawler Optimizations

In an effort to optimize crawler performance and catch errors early, a slow ramp-up of crawling
operations was carried out when starting the main crawl. Initially, the first thousand sites from
the Tranco list selected in section 4.1.1 were dispatched on the static crawling queue. After that,
a detailed analysis of the collected metrics and logs could be performed without risking that
unusable data was being produced, which would have put an unnecessary load on the subsequent
sites. Indeed, some errors arose that could be fixed while crawling was effectively paused. After
deploying an updated crawler version to all instances, the first thousand websites had to be
re-crawled. Because of the high number of requests that hit these most popular sites anyways,
one can argue that a second visit within a short amount of time is ethically justifiable.

After analyzing the second set of results, no more errors were found and the first 100,000 sites –
except for the already visited ones – from the Tranco list were dispatched on the static crawling
queue. While monitoring the crawlers’ health and throughput, the number of concurrent workers
per crawler instance was slowly increased until the crawlers were on the verge of reaching VM
limits, thereby optimizing their crawling performance. Table 11 shows the evolution of the
crawler specifications throughout the crawl. Section 6 explains why iteration 7 in table 11
drastically reduced the number of static crawlers. After the first 100,000 sites, the remainder of
the top one million sites from the Tranco list was dispatched in three additional batches.

Iteration Static Crawlers Dynamic Crawlers

Flavor Instances Workers Flavor Instances Workers

1 m1.medium 6 20 m1.large 8 10
2 m1.medium 4 30 m1.large 9 12
3 m1.medium 4 30 m1.large 9 18
4 m1.small 5 30 m1.large 10 20
5 m1.small 5 30 m1.large 10 25
6 m1.small 5 30 m1.large 10 22
7 m1.small 1 30 m1.large 11 22

m1.small: 1 vCPU, 2GB RAM · m1.medium: 2 vCPUs, 4GB RAM · m1.large: 4 vCPUs, 8GB RAM

Table 11: Evolution of Crawler Specifications Throughout the Crawl

While six static crawlers had been initially provisioned with 20 concurrent workers per instance,
it was possible to increase the number of concurrent workers per instance to 30 and reducing
the VM flavor from m1.medium with 2 vCPUs and 4GB of RAM to m1.small with 1 vCPUs
and 2GB of RAM while maintaining a good task rate.

At the same time, it was possible to shift some resources from static to dynamic crawlers by
shutting down static crawler instances and creating additional dynamic crawler instances thanks
to the automated, idempotent provisioning and deployment using Terraform and Ansible. This
shift was made after re-evaluating the task consumption rate of both crawler types. The browser-
automated dynamic crawlers have a lower throughput than the static crawlers, so providing
additional resources to dynamic crawling made sense.

58

5 DEPLOYMENT 5.5 Infrastructure Optimizations

However, job throughput alignment was still suboptimal with the specifications of iteration 4
in table 11. The reason why the static crawler instance count was not reduced further was to
avoid concentrating too much HTTP traffic on one instance and one IP address. Using multiple
outgoing IP addresses may help to reduce the chance of getting blocked by organizations seeing
traffic on multiple site, like the major CDN providers. Hence, it was necessary to balance the
job throughput rate with the amount of individual crawling hosts and their IP addresses.

59

6 RESULTS

6. Results
After sections 3 to 5 described the crawler’s architecture, implementation, and deployment, this
section details the course of the crawling process and analyzes the resulting content corpus.

Unfortunately, the intended crawl volume of Tranco’s one million most popular websites could
not be obtained because of a dispute with bwCloud that ultimately led to a ban on crawling
activity and halted VMs on very short notice. It is important to note that the necessary
application to request cloud resources from bwCloud for this thesis had been made correctly,
including explicitly requesting resources for web crawling, as their terms of service demanded.
Regrettably, personnel at bwCloud stated to have read over this explicit request and refused to
take responsibility by sticking with the original project approval.

Due to this circumstance, only the first 624,780 sites on the Tranco list26 [117] could be crawled
for subsequent analysis. Nonetheless, the collected sample is large enough to provide relevant
conclusions in regards to R1 and R2.

6.1. Infrastructural Analysis
In addition to analyzing web content, it is worth considering the infrastructure enabling this
data collection. This section first evaluates the distribution of IP version support among crawled
sites before evaluating how the provisioned crawling infrastructure held up during the process.

6.1.1. IPv6 Adoption Rate

Because of the peculiarities of the bwCloud environment described in section 5.3, special attention
to the connection paths for the individual IP versions was required. Hence, metrics on the
adoption of IPv6 were collected during the crawl.

Of all targeted 624,660 sites, only 23.1% supported dual-stack connectivity, i.e., serving both A
and AAAA records for their domain. The most significant fraction, 65.1%, still only supported
IPv4 by merely serving A records. 0.07% of sites are only reachable through IPv6, while 11.7%
did not serve valid A and AAAA records. Many of the latter sites presumably only serve subdo-
mains, for example, because they are part of a CDN like l-msedge.net (Microsoft Azure) or
googleusercontent.com (Google). Note that queries were only performed for the root domain
without considering any subdomains. For instance, a DNS query for A and AAAA records was
performed for example.com, while www.example.com was not evaluated.

Unfortunately, these results paint a bleak picture of IPv6 adoption among the most popular
sites on the web, even though the technology was introduced over twenty years ago. One may
also assume that the adoption rate is even lower for less popular sites.

6.1.2. System Load

This section analyses some of the metrics collected during the crawl and evaluates whether
the estimations from sections 3.1.1 and 5.4 were correct. It also describes some of the issues
discovered during and after the crawling process, which are further discussed in section 7.2.1.

26Available at https:^/tranco-list.eu/list/3V6KL

61

6.1 Infrastructural Analysis 6 RESULTS

Cassandra

All three Cassandra instances showed roughly the same load and behavior during the crawl.
Figure 7 visualizes the collected metrics of the first Cassandra instance over the main crawl time
period. The other instances’ visualized metrics look very similar. Figure 7a shows that the CPU
was utilized in a healthy manner. While not many machine resources were idling, they were not
exhausted, either. Half of the available RAM in fig. 7b was filled with data, while the remainder
was used for caching and buffering.

Similar to the load tests in section 5.4.1, the network throughput in fig. 7c peaks at 353Mbit/s.
For the other instances, the respective maximum is 309Mbit/s and 350Mbit/s. From a simplified
mathematical point of view, the network link of a single Cassandra instance would indeed have
been a bottleneck in the deployment with the sum exceeding the 1Gbit/s limit.

(a) CPU Usage

(b) Memory Usage

Figure 7: Node Metrics – cassandra-1

62

6 RESULTS 6.1 Infrastructural Analysis

(c) Network Traffic

(d) Disk Usage

Figure 7: Node Metrics – cassandra-1

A rather interesting disk usage behavior emerges in fig. 7d. Roughly speaking, the amount
of stored data grew linearly. However, a steep increase followed by a sharp decrease can be
identified every four to five hours. This behavior is shared among all Cassandra instances. In
one case, the data grew at an increased rate for several hours before being drastically reduced
to the expected trend in data growth. While it is unclear what caused these disk usage spikes,
it may be related to a scheduled data compaction or clean-up process.

Dynamic Crawlers

The dynamic crawler instances were provisioned to optimize crawling performance by running
as many as possible concurrent worker goroutines and, in extension, Chrome tabs within the

63

6.1 Infrastructural Analysis 6 RESULTS

instance’s shared Chrome window. Because of the complex nature of remote-controlling a web
browser to visit sites with unknown behavior over a prolonged period, several issues occurred
where workers died, or the instance’s disk space was exhausted because of bugs in the library
interacting with Chrome. Section 7.2.2 discusses these issues and necessary countermeasures in
detail.

Figures 8a and 8b show that, during certain periods, CPU and RAM resources on one of the
dynamic crawler instances were used to their limits. What must be noted is that system load
varies depending on the effort needed to render a particular visited page. In other time ranges,
for example, on April 28th between 08:15 and 10:30, performance degradation occurred due to
instance-bound persistent failures. The other dynamic crawler instances show similar patterns
in their resource usage.

(a) CPU Usage

(b) Memory Usage

Figure 8: Node Metrics – crawler-dynamic-1

64

6 RESULTS 6.1 Infrastructural Analysis

(c) Network Traffic

(d) Disk Usage

Figure 8: Node Metrics – crawler-dynamic-1

The individual network traffic of the dynamic crawlers was manageable, with the exemplary
instance in fig. 8c having a maximum transmitting data rate of 161Mbit/s (tunneled traffic plus
VPN overhead), while the maximum receiving data rate was just 4.36Mbit/s. As these VMs
were mainly limited by their compute and memory resources, networking was not an issue.

The previously mentioned crawler disk hogging is visible in fig. 8d. Because temporary data
from Chrome and chromedp was not cleaned up correctly, a scheduled shutdown of workers
was necessary to remove any dangling data filling up the instance’s disk. These drastic data
reductions can be clearly seen in fig. 8d.

65

6.1 Infrastructural Analysis 6 RESULTS

Static Crawlers

Fortunately, the less-complex static crawlers were significantly more reliable. As previously
addressed in section 5.5.2, the available VM resources per instance were not used to their full
potential because the load distribution over more IP addresses was considered more important.
Figure 9 shows the resource usage for a sample instance. Even when reducing the available
resources by downgrading their VM flavor to m1.small, as described in section 5.5.2, resource
usage remained quite low. Figure 9b nicely visualizes the change in available RAM. Since the
dynamic crawlers were significantly slower and the assigned quotas prevented increasing the
total amount of instances, it would have made little sense to increase the number of concurrent
workers per static crawler instance, even though the available resources were very sparingly used.

(a) CPU Usage

(b) Memory Usage

Figure 9: Node Metrics – crawler-static-1

66

6 RESULTS 6.1 Infrastructural Analysis

NAT64 Gateway

Due to bwCloud’s IPv6-only connectivity described in section 5.3, a NAT64 gateway was deployed
in another region that could route packets to IPv4-only web servers. The gateway’s computing
and memory resources were generously specced with 4 vCPUs and 8GB RAM (m1.large) to
prevent it from becoming a bottleneck in the crawling process.

Throughout the crawl, the NAT64 gateway VM used a maximum of 10% CPU and 3.5GB RAM.
Figure 10 shows the network throughput peaked at only 139Mbit/s. It is thus reasonable to
assume that the NAT64 workaround did not negatively affect crawler performance in a significant
way.

Figure 10: Network Usage – nat64-gateway

Crawl Statistics

Several custom metrics detailed in section 5.2 have been collected during the crawling process.
Figure 11a visualizes the number of active concurrent workers per job queue. Some initial errors
on the dynamic crawlers caused the number of their workers to fluctuate at the beginning of
the crawl. After that, the total number of concurrent dynamic workers was ≈ 40% higher than
the number of static workers to compensate for the slower job throughput rate. The previously
mentioned scheduled cleanup of growing temporary data, which required to shutdown all workers,
is also visible in fig. 11a. The sudden drop of static workers on April 28th, at around 10:30,
can be explained with bwCloud’s forced shutdown of static crawler VMs. While attempts were
made to resolve the issue with bwCloud personnel, the remaining jobs in the dynamic crawling
queue had been continued to be processed to allow for full coverage of all sites that were already
visited by the static crawlers.

Figure 11b shows the job duration in the 99th percentile on a logarithmic scale. While in
extreme cases, static crawlers relatively consistently took 1.6min to complete a crawling task,
i.e., visiting a targeted domain’s home page and any subsequently discovered authentication-
related URLs, the dynamic crawlers’ task duration exhibited a significant deviation. In the 99th

percentile, values jump between around 5min and 15 to 30min. That is interesting because
the dynamic crawler implements a fixed timeout of 20min for every queue task. After that,

67

6.1 Infrastructural Analysis 6 RESULTS

the handler’s context is canceled, and the current blocking operation is supposed to return
an error. As some tasks appear to have been running longer than that, there may be a bug
in the crawler implementation or in the chromedp library. Unfortunately, this behavior was
only discovered after the crawl had already concluded, so no further investigation was possible.
Nonetheless, fig. 11b shows the drastic difference in crawl time per site that makes crawling
client-side rendered content significantly more challenging with limited resources.

(a) Active Workers per Queue

(b) Task Duration (P99, log scale)

Figure 11: Crawler Load Metrics

68

6 RESULTS 6.1 Infrastructural Analysis

(c) Queue Operation Duration (P99)

(d) Store Operation Duration (P99)

Figure 11: Crawler Load Metrics

In regard to queue publishing operations, RabbitMQ was easily able to handle the resulting
load. Figure 11c shows that publish operations took around 200ms in the 99th percentile. This
correlates with metrics collected for RabbitMQ’s host machine, which place CPU usage in a
range of 5− 55%, on average at ≈ 10%. At the same time, RAM usage was just over 50%.

While read operations in the crawled hostnames table tended to take a bit longer than others,
store operations overall had equally good performance, as displayed in fig. 11d. In the 99th

percentile, CQL queries mostly took 100 to 500ms – with the exception of few outliers. That is
significant because Cassandra had to ingest all fetched content sent by the crawlers. It appears
that write performance was satisfactory for the use case. Section 7.2.5 discusses why that is
only partly correct and how read performance compares.

69

6.1 Infrastructural Analysis 6 RESULTS

(e) Total Error Rate

(f) Total Job Throughput Rate

Figure 11: Crawler Load Metrics

In fig. 11e, the error rates of all crawlers by gravity and affected queue are visualized. The
dashed red line represents an alerting threshold in Grafana, over which notifications were sent
to request manual intervention. While the curve for the initial dynamic crawler failures, which
were discussed previously, extends past the plotted area, most subsequent error rates were within
an acceptable range.

The previously described issue of dying worker goroutines is also evident in fig. 11f, which shows
the job throughput rate separated by crawler type. While the static crawlers processed jobs at
a consistent cumulative rate of around nine tasks per second, the dynamic crawlers repeatedly
started out with a similarly high throughput rate and then gradually lost momentum. After
the scheduled clean-up operations, the dynamic crawlers processed between 6 and 8 tasks per
second in total, before losing an increasing amount of concurrent workers, resulting in a rate of

70

6 RESULTS 6.2 Quantitative Analysis

only 2 tasks per second. The scheduled clean-up of temporary data stops the remaining workers
and recreates the initially provisioned amount of concurrent goroutines, causing a steep increase
in throughput.

Finally, fig. 11g shows the total request rate of all static crawlers by content type. Because JS
resources are often separated into multiple files, which may even be served from different web
servers or CDNs, the amount of issued JS requests per minute is almost four times the amount
of HTML documents.

(g) Total Request Rate (Static Crawlers)

Figure 11: Crawler Load Metrics

6.2. Quantitative Analysis
This section reviews the collected data quantitatively and aims to partly answer the posed
research questions R1 and R2 through statistical analysis.

6.2.1. Successful Connection Rate

Of all 624,780 targeted sites, 73.69± 1.32% served at least one response that could be fetched,
while no successful connection was possible for the remaining 26.31 ± 1.32%. As the standard
deviation indicates, the differences in successful connection rate between static and dynamic
crawlers are negligible.

On the initial home page visit, the static crawlers encountered 56,985 TLS-related errors, for
instance because the certificate was expired or not valid for the requested hostname. 49,599
hostnames could not be resolved, presumably because only their subdomains are used to serve
content, like l-msedge.net (Microsoft Azure) or googleusercontent.com (Google). Moreover, a
timeout on the initial HTTP request occurred in 35,879 cases, while 19,016 hosts either refused,
reset, or closed the connection. The dynamic crawlers recorded similar amounts of errors per
category, although the individual counts vary slightly.

Of all captured HTTP responses, the majority had successful HTTP status codes. 98.93±0.36%
had a 200 OK status code, while only 0.42 ± 0.25% had a 403 Forbidden status code and

71

6.2 Quantitative Analysis 6 RESULTS

0.26 ± 0.12% had a 404 Not Found status code. All other status codes combined appeared in
0.39± 0.02% of HTTP responses.

6.2.2. Discovered Content Distribution

Figure 12 visualizes the distribution of previously discovered and successfully crawled content.
Figure 12a shows the number of fetched HTML documents per targeted website separated by
crawler type. The histogram’s y-axis uses a logarithmic scale to illustrate the exponentially
decreasing number of documents per site. The mean number of HTML documents per site
collected by static crawlers is 12.87 ± 15.34. Such a high standard deviation implies that the
amount per site varies considerably. Indeed, the percentiles P10 = 5, P50 = 10, P90 = 25, and
P99 = 55 indicate high variance and the existence of outliers, which is visible in fig. 12a. For
instance, 1,810 HTML documents were collected from dnscentral.com . This particular outlier
is discussed in section 6.4.

What’s also visible in fig. 12a is that the static crawlers actually discovered and crawled slightly
more authentication-related URLs per site than the dynamic crawlers, whose mean value of
HTML documents per target is 9.60 ± 11.44, with P10 = 5, P50 = 5, P90 = 20, and P99 = 45.
Although the difference is not substantial, the exact cause is unclear.

0 250 500 750 1000 1250 1500 1750
Fetched URLs per Target

100

101

102

103

104

105

Ta
rg

et
s

crawler
static
dynamic

(a) HTML

0 500 1000 1500 2000 2500 3000 3500
Fetched URLs per Target

100

101

102

103

104

105

Ta
rg

et
s

crawler
static
dynamic

(b) JS

text/html text/javascript
Content Type

0

50

100

150

200

250

Fe
tc

he
d

UR
Ls

 p
er

 Ta
rg

et

crawler
static
dynamic

(c) Combined, < P99

Figure 12: Distribution of Content Per Target

72

6 RESULTS 6.2 Quantitative Analysis

In contrast, fig. 12b shows the number of JS files crawled per website. It is apparent that the
dynamic crawlers were able to discover significantly more content than the static crawlers with
respective mean values of 84.45 ± 92.06 and 37.89 ± 41.08, while the variance is even greater.
The percentiles of dynamically crawled JS per site are P10 = 12, P50 = 60, P90 = 180, and
P99 = 408. On the other hand, the static crawlers discovered considerably less JS content, with
P10 = 6, P50 = 27, P90 = 81, and P99 = 195.

Figure 12c visualizes the amount of crawled content per site, separated by content type and
crawler type in combination. To allow for better visibility, the data in fig. 12c is limited to
< P99 to prevent extreme outliers from compressing the common values on a linear scale. The
graph nicely shows that significantly more unique JS resource URLs have been fetched per
site compared to HTML documents. Additionally, the slightly higher number of HTML pages
crawled statically is contrasted by the significantly larger quantity in dynamically crawled JS
resources.

6.2.3. Authentication Method Detection

As outlined in section 4.3.2, matching was implemented using several Regex and DOM-based rues
to detect the authentication methods used by websites. All crawled content was analyzed using
this rule set to automatically detect support for the different studied authentication technologies.
The same rule set was used for both types of crawler to compare the crawling technique.

passkeys passwords u2f webauthn
Methods

dy
na

m
ic

st
at

ic
Cr

aw
le

r

1,122 135,369 716 12,645

264 38,730 121 842
103

104

105

(a) Detected Methods

co
nd

iti
on

al
_m

ed
ia

tio
n_

av
ai

la
bl

e_
re

ge
xp

co
nd

iti
on

al
_u

i_s
ou

p

na
vi

ga
to

r_
cr

ed
en

tia
ls_

re
ge

xp

pa
ss

wo
rd

_in
pu

t_
so

up

u2
f_

re
ge

xp

Rule Matches

dy
na

m
ic

st
at

ic
Cr

aw
le

r

1,067 72 12,645 135,369 716

263 2 842 38,730 121

101

102

103

104

105

(b) Matched Rules

Figure 13: Detected Authentication Methods per Site, Separated by Crawler Type

Figure 13 contains two heat maps depicting the matches found by either crawler type. While

73

6.2 Quantitative Analysis 6 RESULTS

fig. 13a shows the number of detected authentication methods separated by crawler type, fig. 13b
represents the individually matched rules per crawler type. A combination of multiple rules may
detect an authentication method. In both cases, duplicate matches per site are ignored, so only
one rule match per target is considered.

It is apparent that content collected by the dynamic crawlers has a significantly higher rule-
matching rate with a mean value of 12.9±13.7. The highest difference occurs in the rule testing
for Conditional UI support. While static crawlers could only identify 2 sites with Conditional
UI, dynamic crawlers were able to identify 72 sites, which is 36 times more. The rule testing for
a traditional password-based sign-in form had the smallest factorial difference of 3.5, although
the absolute difference with static crawlers identifying 96,639 fewer sites than dynamic crawlers
is still substantial.

As one would expect, the largest number of sites that had at least one match employ traditional
password-based sign-in forms, with a total of 137,424 identified websites across both crawler
types. In total, 12,690 sites were found to reference the WebAuthn Credentials API within their
JS resources. It is important to note that this does not necessarily mean that every user has
access to FIDO-based authentication on these websites, or that the relevant part of the contained
code is even in use. The rules detecting WebAuthn Credentials API usage also do not allow
any conclusions on whether FIDO credentials are being used in a single-factor or multi-factor
authentication scheme.

con
dit

ion
al_

med
iat

ion
_av

aila
ble

_re
ge

xp

con
dit

ion
al_

ui_
sou

p

na
vig

ato
r_c

red
en

tia
ls_

reg
exp

pa
ssw

ord
_in

pu
t_s

ou
p

u2
f_r

eg
exp

Rule

101

102

103

104

105

M
at

ch
ed

 S
ite

s

crawler
both
static
dynamic

Figure 14: Matched Sites Per Rule and Crawler

In contrast, the rule testing for use of the isConditionalMediationAvailable method on the
Credentials API identified a total of 1,077 sites, indicating passkey support. The same is true
for the Conditional UI rule, which matched a total of 72 sites. Lastly, a total of 730 sites still

74

6 RESULTS 6.3 Quantitative Validation of Matches

having references to the legacy U2F API in their JS resources were identified. Aside from the
previously mentioned matches, the remaining 460,396 sites could not be matched by any of the
employed rules for any of the two crawler types.

Figure 14 displays how many sites were matched by each rule for one or both crawler types.
It is striking that while there are sites matched by both crawlers for every rule, the dynamic
crawler was able to identify a larger amount of sites in every case. The Conditional UI rule
does not even identify a single site through statically crawled material that is not also identified
by the dynamically crawled equivalent. In combination, figs. 13 and 14 make it obvious that
the method of dynamically crawling the web is superior for every detection rule, even though
section 6.2.2 revealed that the static crawlers collected more HTML documents per site. For
reference, table 12 lists the exact amounts of matches per detection rule and crawler type.

Rule Both Static Dynamic Total

Conditional Mediation Available (Regex-based) 253 10 814 1,077

Conditional UI (DOM-based) 2 0 70 72

Navigator Credentials (Regex-based) 797 45 11,848 12,690

Password Input (DOM-based) 36,675 2,055 98,694 137,424

U2F (Regex-based) 107 14 609 730

Table 12: Matched Sites Per Rule and Crawler

6.3. Quantitative Validation of Matches
After analyzing the matches in the crawled content, this section makes an effort to verify the suc-
cessful detection of authentication methods by comparing the results with a validation dataset.
It is important to note that the described method only considers true positives and false nega-
tives, as there is no suitable validation data available for false positives or true negatives.

6.3.1. Validation Datasets

To test detection effectiveness, a labeled validation dataset was required. Unfortunately, no
neutral and authoritative dataset on the usage of authentication methods by specific websites
is publicly available, which was one of the motivations for this thesis. To be able to perform
some result validation anyway, two separate lists of websites that supposedly use some form of
phishing-resistant authentication were evaluated.

Security key vendor Yubico publishes an online Works with YubiKey catalog27 that lists compat-
ible software products from partnering companies. For every software product, the supported
“security protocols” are listed, for example, U2F and WebAuthn, but also TOTP and OpenPGP.
Of course, the product list is specifically tailored to the use of hardware security keys and tends
to avoid information that could reflect poorly on the vendor’s products. For instance, the cat-
alog does not provide any information on the employed authentication scheme, i.e., whether
the security key is used in an MFA sign-in flow or as a single passwordless factor. This makes
Yubico’s catalog unsuitable to validate the crawlers’ passkey classifications. Moreover, numer-
ous listed software products do not refer to a web-based online service whose website could be
27Available at https:^/www.yubico.com/works-with-yubikey/catalog/

75

6.4 Qualitative Analysis 6 RESULTS

crawled to detect authentication methods. For example, the catalog contains several enterprise
software products operated on-premise or using tenant-specific domains. Other listings refer
to browsers, operating systems, and other client software. Filtering out all unsuitable listings
to make Yubico’s catalog usable as a validation dataset would thus require significant manual
effort.

Regarding the second list, AgileBits, the company behind password manager 1Password, recently
launched passkeys.directory, which is supposed to be a community-driven index for websites
that offer passkey support. As the site is fairly new and passkey adoption across the web is
still in its infancy, the amount of listed websites currently is quite low. Naturally, this limits
its usefulness as a validation dataset. However, passkeys.directory does provide a distinc-
tion between MFA WebAuthn support and the support for single-factor passkeys. Moreover,
the number of unsuitable software products is significantly lower compared to the Works with
YubiKey catalog.

In both cases, it was necessary to implement custom scraping software to extract content from the
respective APIs and reorganize it to produce a practical, unified validation data structure. The
implementation to collect and restructure validation datasets was done to allow for encapsulated
custom provider components to be plugged into the overall process. Ultimately, the dataset
provided by passkeys.directory was used to evaluate the detection effectiveness of the crawlers
because of the reduced effort involved in verifying listing correctness and its distinction between
WebAuthn-based MFA and single-factor passkey authentication.

6.3.2. Comparing Matching Rule Effectiveness

Out of the available 50 entries in the validation dataset scraped from passkeys.directory28, 34
domains were visited during the crawl. Out of those, it could be manually verified that either
generic WebAuthn-based or passkey authentication was employed on 27 websites. The remainder
were authentication software products that have no sign-in process on their own websites like
Okta, not available based on the geographic region, only accessible through a smartphone app
but not over the web, or incorrectly listed.

From the 27 verified sites, 14 were correctly identified as either supporting generic WebAuthn or
passkeys in the analyzed crawl data. This implies a detection rate of 51.85%. Due to the size of
the validation dataset, this assessment only has limited meaningfulness. Nonetheless, detection
effectiveness should be evaluated to allow for improvements in future iterations. Section 6.4.1
analyses why the crawlers were not able to detect WebAuthn usage on 48.15% of the manually
verified sites in detail.

6.4. Qualitative Analysis
After statistically analyzing the crawler’s collected content corpus and trying to validate matches
based on publicly available labeled data automatically, this section examines the matched sites,
especially the false negatives determined in the proceeding section.

6.4.1. Undetected Sites

To find possible avenues for future improvements, this section analyzes the responses fetched
from the 13 missed sites from the validation dataset. For reference, these sites are google.↩
28Fetched on June 15, 2023

76

6 RESULTS 6.4 Qualitative Analysis

↪com, microsoft.com, cloudflare.com, shopify.com, nvidia.com, gitlab.com, bestbuy.com,
namecheap.com, hyatt.com, virginmedia.com, mangadex.org, marshmallow-qa.com, and omg.↩
↪lol.

Subsequently Requested JS Resources

The websites of Google, Cloudflare, and Namecheap all split their JS resources into chunks
that are loaded only on pages where they are needed, which can save client bandwidth and
improve load times. The sign-in flows of all three services were manually analyzed to find the
resources that contained relevant JS code for WebAuthn-based authentication. All three sites
only supported MFA at the time of the crawl, and any JS code interacting with the WebAuthn
Credentials API was only loaded after the first authentication factor, i.e., a combination of email
address and password, had been verified. Because it is unfeasible for a web crawler to create
accounts on every visited website to analyze their sign-in process, subsequently requested JS
resources remain a significant blind spot for detecting WebAuthn usage.

After the crawl had already concluded, Google announced that accounts could now use passkeys
as a sole authenticating factor. The reflecting code changes on the sign-in page were analyzed
at the time of writing. The new JS resources were found to be detectable by the Conditional
Mediation matching rule. In an updated crawl corpus, Google’s use of phishing-resistant au-
thentication would thus be correctly detected.

Subsequent Redirects and Bot Detection

Another reason why the crawler could not detect WebAuthn and passkey support on some
websites is subsequent redirects on the sign-in page. Although the rationale is not always clear,
this is one way of deterring web crawlers and other bots. For instance, Shopify and GitLab use
a JS-based approach to trigger subsequent redirects after the page has already finished loading.
In this case, the crawler saved the served HTML document and continued to the next task, as
it was unaware of the delayed redirect. Aside from increasing the waiting time on every visited
page, which would drastically increase overall crawl time, one approach for improvement could
be trying and detect if a page intends to redirect the user after they have waited for some time.

While it remains unclear whether Shopify uses redirects for bot detection since their redirect
delay is insignificant, GitLab embraces the waiting room approach to detect bots. Whenever
a new client visits the login page at https:^/gitlab.com/users/sign_in, a dedicated waiting
screen appears, saying “Checking your browser before accessing gitlab.com”. It may take several
seconds, during which GitLab presumably performs some form of browser fingerprinting, before
the user is redirected to the sign-in form.

Hyatt’s homepage was entirely inaccessible for both types of crawler, as it successfully detected
the automated visit and served an HTML document containing only an inline script with a 429
Too Many Requests HTTP status code. The script could be traced back to the bot prevention
vendor Kasada29. Presumably, the script is only served to suspicious clients and represents an
invisible challenge that fingerprints the client and tries to entirely prevent any automated site
visits.

While these sites are not in the validation dataset, similar script or iframe-based blocking that
could be traced back to Kasada was found for other sites in the crawl corpus. Among others,

29https:^/www.kasada.io

77

6.4 Qualitative Analysis 6 RESULTS

Weebly, GoDaddy, Twitch, and Square all served similar challenges with a 429 HTTP status code.
In total, the crawler instances have received 429 HTTP status codes from 712 unique sites, from
which a small sample of responses was analyzed. Not all responses with 429 status codes are
necessarily related to Kasada’s bot prevention. However, in every instance of Kasada-based
blocking that could be found, a 429 status code was present.

The site marshmallow-qa.com showed differing behaviors between the two crawler types. While
it detected the static crawler as a bot and refused to serve any content, the site did not respond
until a timeout occurred when visited by the dynamic crawler. Upon inspecting the responses
received from marshmallow-qa.com and GitLab, some embedded JS seems to be shared among
the two sites. This shared code suggests a common origin: CDN provider Cloudflare appears to
have blocked the requests from reaching their final destination. It is possible that the subsequent
request was also blocked because an automatic visit was detected. The sites or their CDN
provider Cloudflare could also have blocked the crawler VMs shared IP network after the initial
visit.

Lastly, website provider omg.lol served an empty HTML document to the dynamic crawler,
which may also indicate some bot prevention method being utilized. However, the static crawler
was able to crawl the site successfully. Unfortunately, as the static crawler cannot execute
JS, it missed an inline JS import within an HTML document that requested an additional
JS file containing multiple relevant WebAuthn API calls that could have been matched in the
subsequent analysis.

Insufficient Detection Rules

In the case of Nvidia’s website, the use of WebAuthn could have been detected with an additional
matching rule. While some sites test for the existence of the Credentials API property on the
browser’s global navigator object, Nvidia and possibly others test if the PublicKeyCredential
is present on the global window object. This method of detecting a browser’s WebAuthn support
was not anticipated before performing the crawl, but could be easily added to increase detection
rate.

JavaScript-Based Location Changes

With the increased adoption of client-side rendered SPAs, some developers cease to rely on
traditional HTML hyperlinks and replace them with forced browser location changes triggered
using JS. This anti-pattern hurts UX and should thus be avoided. It also prevents web crawlers
from accurately identifying links to other pages.

Listing 11 shows two examples of JS-based hyperlink alternatives from Virgin Media and Man-
gaDex. The code has been shortened and formatted to improve readability. In line 2, the
referenced hyperlink of the anchor tag contains what is essentially the JS-equivalent of a No
Operation instruction. When the user clicks on the link, JS intercepts the event and executes
some code that replaces the browser’s currently active URL with another one. The second ex-
ample in lines 8− 12 follows a similar approach. However, an HTML button is used instead of
an anchor tag.

Without trying to reverse-engineer a site’s JS code or emulating every possible event on each
page, a static web crawler has little chance to detect these JS-based location changes. A dynamic
crawler could possibly find the linked pages by visiting the website and actually clicking the

78

6 RESULTS 6.4 Qualitative Analysis

HTML elements it deems relevant. However, this would result in a different process design in
which URLs could not be deduplicated and visited after the home page tab was closed.

Listing 11: JavaScript-Based Hyperlink Examples
1 <!-- Excerpt from virginmedia.com -->
2 <a _ngcontent-qnp-c108="" class="..." href="javascript:void(0)">
3 <i _ngcontent-qnp-c108="" class="..."></i>
4 Sign in to My Virgin Media
5
6
7 <!-- Excerpt from mangadex.com -->
8 <button data-v-623b4d2a="" data-v-9542ab21="" class="..." style="..">
9

10 Sign In
11
12 </button>

Geographical Region-Based Behavior

As today’s Internet becomes increasingly splintered into region-specific fragmentations, a web
crawler’s point of access becomes more influential. For example, Best Buy places a landing page
visible in fig. 15 in front of its website if the request comes from an IP address associated with
a German Internet Service Provider (ISP). As the implemented crawler was narrowly scoped,
it could not identify any relevant links on the landing page in such a case and moved on. This
problem could be solved by architecting a less-scoped crawler that visits more or all linked pages,
which would, however, require significantly more crawl and storage resources and increase the
load on all crawled websites.

Figure 15: Best Buy Landing Page

Yahoo’s Japanese website yahoo.co.jp that is listed on passkeys.directory is another more
extreme example of geo-based website behavior. The site serves a block notice for visitors
within the European Economic Area and the United Kingdom, informing them that Yahoo

79

6.4 Qualitative Analysis 6 RESULTS

Japan stopped serving their website to this geographic region in 2022 [191], effectively locking
them out completely. The crawler was hosted in Germany, so it could not access the site.
Because of the site-wide geoblocking, yahoo.co.jp was excluded from the validation dataset.

Unknown Reasons

In some cases, the reason behind unsuccessful matching remains unclear. One example is Mi-
crosoft’s website. When examining the fetched responses and comparing them with the excerpts
from a previous manual visit, it became clear that there was an important difference between
the HTML documents, which are contrasted in listing 12. The code in the listing is shortened
and formatted for readability. For unknown reasons, the JS rendered different a DOM on the
manual visit, which is visible in lines 12-24. While this response contains an anchor tag that
could be matched using the crawler’s content analysis, the fetched response in lines 1-9 does not
appear to include any interactive elements. The JS of the crawled version might have an event
listener that triggers a redirect, similar to listing 11, or the rendering of the inner anchor tag
was delayed intentionally or due to poor performance, and the crawler had already stored the
response by that point. Either way, the exact reason why the link was not rendered remains
unclear. If it had been rendered, the crawler would have been able to extract and match the
referenced URL. In fact, an excerpt from a manual visit is part of the unit tests for the crawler’s
authentication URL matching.

Listing 12: Excerpts from Visits to microsoft.com
1 <!-- Excerpt from Crawl -->
2 <div id="meControl" class="c-me"
3 data-signinsettings="{...}" data-m="{...}">
4 <div class="msame_Header">
5 <div class="msame_Header_name st_msame_placeholder">
6 Anmelden
7 </div>
8 </div>
9 </div>

10
11 <!-- Excerpt from Manual Visit -->
12 <div id="meControl" class="c-me"
13 data-signinsettings="{...}" data-m="{...}" ...>
14 <div
15 class="mectrl_root mectrl_theme_light_header" ...>
16 <a id="mectrl_main_trigger" ...
17 href="https://www.microsoft.com/rpsauth/v1/account/SignIn?ru=https%3A%2F%2Fwww.↩

↪microsoft.com%2Fde-de%2F">
18
19 Bei Ihrem Konto anmelden
20
21 ...
22
23 </div>
24 </div>

80

6 RESULTS 6.4 Qualitative Analysis

6.4.2. Analyzing Matches

After investigating why some sites in the validation dataset could not be matched, this section
aims to scrutinize the match statistics from section 6.2 regarding duplicate counts and rule-
specific misclassification.

Inflated Numbers

Given the low number of websites listed on passkeys.directory, it would be surprising if every
one of the 1,122 sites identified by the dynamic crawler in fig. 13a already implemented passkey
support for their users. Unfortunately, the following analysis shows that this number is highly
inflated by false positives where third-party-served, passkey-related JS code shared among many
sites is imported but never actually used.

After identifying JS resource URLs that repeatedly occurred in the dataset and were used by
multiple sites, the URLs were reduced to their hostnames, which were mapped to IP addresses.
The dataset was then grouped by IP address to find all target domains and content URL
hostnames that shared the same third-party JS.

The largest group of 547 sites, including big brands like bose.com, marriott.com, nfl.com, and
uefa.com, all use JS from cdns.gigya.com30 that matches the Conditional Mediation rule. Gigya
was a customer Identity and Access Management (IAM) platform provider that was acquired
by SAP in 2017 [165]. Today, Gigya is part of SAP’s customer IAM service used by many
enterprises like the ones mentioned above. Unfortunately, WebAuthn API usage in the Gigya
scripts does not mean that all mentioned brands support passkey authentication. In fact, none
of the tested sample sites support passkeys yet. Rather, SAP presumably implemented passkey
authentication – or is in the process of doing so – to enable their enterprise customers to support
it. Due to the fact that passkeys were introduced only a short time ago, it is reasonable to assume
that very few or none of these sites have enabled support yet, as the Conditional UI rule did
not match on any of the sites using Gigya scripts.

The second largest group are 271 individual sites like alphapaw.com, magnoliabakery.com, and
sockprints.com that share common JS resources, which also match the Conditional Mediation
rule, indicating passkey support. Indeed, all of these sites are presumably hosted by Shopify,
which recently enabled passkey support for all merchants on their platform [120]. However,
in a random sample of 20 sites, none had passkey support enabled. Instead, they either used
traditional passwords or login links sent via email. Thus, merchants likely have to manually
enable passkey authentication on their websites, which is unfortunate given that many sites
used Shopify’s unified authentication service and UI.

While 54 individual domains share JS resources from the content.r9cdn.net CDN, they were
confirmed to have passkey support. However, the domains are all localized and operated by
Kayak Software Corporation, which serves kayak.com, momondo.com, cheapflights.com, and
swoodoo.com in various countries with localized Top Level Domains (TLDs).

41 individual sites used the same JS resource hosted on www.amazon.com that also matched
the Conditional Mediation rule. Some of the initially visited sites had Amazon domains with
localized TLDs. While Amazon has not yet publicly announced passkey support, it is plausible
they would be testing whether clients supported conditional mediation to evaluate the number
of potential users.

30or regionalized subdomains like cdns.us1.gigya.com

81

6.4 Qualitative Analysis 6 RESULTS

However, other sites seem to have slipped into the dataset because they set hyperlinks to Amazon
where authentication keywords were contained within the URL. On the linked pages, Amazon in
turn included their JS containing Conditional Mediation queries. Section 7.3.2 discusses these
URLs in detail. In total, there are 15 sites that were wrongfully identified as having passkey
support based on their link to some Amazon page. This incident may reveal a larger problem
with the laxness of ensuring URLs discovered on a home page actually belong to the same
site. Section 7.4.2 discusses possible approaches for reducing false positives through lax URL
discovery.

Similarly to Amazon, 29 sites shared JS resources that were largely localized PayPal domains,
with some unassociated sites mixed in that presumably linked to PayPal on their home pages.

26 domains using JS resources from accounts.zoho.eu seem to be operated by customer relation
management software vendor Zoho. Many domains instantly redirect to a subpage under the
zoho.com domain. These redirection domains thus needlessly inflate the number of discovered
sites supporting WebAuthn. One way to combat this would be to check whether the final HTTP
location after redirects was already in the crawl corpus, and if so, discarding the newly visited
domain.

Nonetheless, there are sites sharing JS resources that actually all support passkeys. For example,
a total of 24 websites of local banks in the United States like the Bank of Missouri and the
Meade County Bank appear to employ a common digital banking platform whose JS code could
be traced back to its vendor Jack Henry31. Out of a random sample of ten sites, all banks used
the same sign-in UI with passkey support, customized with their branding color and imagery.

JS vs. HTML Matching

A significant fraction of matches derived from parsing included third-party JS resources may
suffer from an overly lax URL discovery policy. This could apply to all authentication methods
detected through JS-based rulesets. Section 7.4.2 discusses possible improvements.

However, at least in theory, detected methods derived from HTML document matches are not
susceptible to the same problem, as the visible site is analyzed directly. If Conditional UI code
is present, it is very likely that the site actually allows passkey authentication. If WebAuthn-
related JS code is contained in some included script, it does not imply the code is actually
executed on the site.

Because the crawler only identified a total of 72 sites where Conditional UI was detected, it
was feasible to examine manually all of them. Unfortunately, upon closer inspection, it was
clear that a significant number of domains were simple redirects to a small number of sites that
were also present in the dataset. Of the 72 sites, 31 immediately redirected the crawler to a
subpage of customer relation management platform vendor Zoho’s website, or, in rare cases,
the website of one of its associated brands. Although it is unclear why Zoho employs domains
like zohocampaigns.com, zohoassist.com, and zohonotebook.com, it may be related to marketing
activities.

An additional 15 sites served their own content but relied on one of the other sites included in
the dataset to authenticate users. In most cases, businesses use Zoho and allow their customers
to sign in on Zoho’s platform. While this is debatable, it can be argued that these sites have
passkey support by extension through a third party.

31https:^/banno.com

82

6 RESULTS 6.4 Qualitative Analysis

It could be manually verified that 20 sites have support for passkey authentication. Of those, 11
sites appear to be local banks in the United States that employ the previously mentioned digital
banking platform. The 13 remaining bank websites extracted using the described IP-based
method were only matched by the Conditional Mediation rule, but not the Conditional UI rule.
85% of the discovered and verified sites matched by the Conditional UI rule were not included
in the validation dataset from Passkeys.directory.

The remaining 6 sites were misclassified due to discovered links outside of the actual site’s scope,
which featured a Conditional UI. Interestingly, in one case, the mismatched site gottadeal.com
linked to a URL under Best Buy’s domain, which redirected to Best Buy’s sign-in form. While
section 6.4.1 describes how visiting Best Buy’s home page was not possible due to a region-
specific landing page, the mismatched site was considered to have passkey support because Best
Buy’s sign-in form matched the Conditional UI rule. Section 7.4.2 discusses harnessing these
unintended matches to improve detection for the redirect target website.

The qualitative analysis has shown that a large fraction of detected authentication methods is
inflated by false positives. The two identified causes seem to be a lax URL discovery policy
and the inclusion of unused JS code. Nonetheless, multiple sites providing passkey support not
previously present in the manually compiled Passkeys.directory list were newly identified.

83

7 DISCUSSION

7. Discussion
This section scrutinizes the results from section 6 by highlighting various shortcomings of the
crawler’s architecture and implementation, as well as the selected methods for URL discovery
and authentication method detection. It also describes several obstacles and how they were
overcome. In addition, unexpected findings in the crawled data and possible improvements for
future work are discussed.

7.1. Limitations
The chosen methodology to explore whether authentication methods can be detected auto-
matically through web crawling (R1) and whether it makes a difference in crawling client-side
rendered content (R2) has inherent weaknesses. On the one hand, the implemented detection
has several deficiencies. On the other hand, dealing with binary classification categories is chal-
lenging in a context where no ground truth exists. This section examines these limitations in
detail.

7.1.1. Inherent Detection Weaknesses

A narrowly scoped web crawler that tries to analyze unknown content by capturing snapshots
at specific points in time has several detection weaknesses, which are discussed below.

Detect When a Page Is Loaded

As section 4.3.2 mentions, determining if a page with unknown behavior has finished, or will ever
finish loading, is impossible, as it is a classic case of the undecidable halting problem. Therefore,
it can be assumed that a web crawler is not able to collect all resources in every case before
moving on to the next page. Since it is not guaranteed that every resource is fetched, relevant
content may be missing for analysis.

Resource Chunking

Many sites split their JS code into several chunks to optimize client performance. This approach
leads to the absence of parts of the executed JS within an authentication flow, for instance, for
WebAuthn-based MFA. Instead, the necessary JS to interact with the browser’s Credentials
interface is subsequently requested once the user has successfully authenticated with their first
factor. A web crawler cannot advance that far into an authentication flow without having a
prepared account for each visited site and circumventing possible CAPTCHAs, which is not
desirable behavior anyways. Thus, some authentication methods are not detectable by a web
crawler if the associated HTML and JS code is not referenced on pages that can be publicly
visited. However, this limitation is only relevant to MFA flows where WebAuthn is not used for
initial authentication.

Websites Not Using Anchor Tags

Listing 11 in section 6.4.1 shows two examples of many possible ways to re-implement tradi-
tional hyperlinks using JS. Instead of using standard HTML anchor tags with href attributes
containing the linked URL, some developers find creative ways to send users to linked pages.

85

7.1 Limitations 7 DISCUSSION

They may intercept click events on a button element, or a plain div tag. Without trying to
reverse-engineer the JS code, it can be very challenging to discover these kinds of page links
automatically.

Miscellaneous Link Labels

Even if a traditional hyperlink is used, the studied crawler is narrowly scoped, so it has to decide
whether to follow any discovered links. This decision is based on two pieces of information: the
linked URL itself and the link’s visual label. Since there are lots of ways to paraphrase the link
text for a sign-in page, it is likely that the list of known phrases is not all-encompassing and
some pages will thus be missed. For example, the only link to access one’s account on Apple’s
home page reads “Manage Your Apple ID”. On other sites, the sign-in link may be only labeled
by a visual, like an image or an icon representing a user without any descriptive text. It is thus
reasonable to assume that the crawler misses some sign-in links that may be obvious to a human
looking at the rendered page.

Language Bias

Another limitation is the implementation’s inherent language bias. The crawler can detect login
keywords in 58 languages, provided the website provides an HTML language tag. However,
the localized keywords could only be composed manually for a small subset of languages. The
rest was automatically generated using a combination of the publicly available services Google
Translate and DeepL. Especially for languages that appear less frequently on the Internet or are
spoken by fewer people, it is possible that those keywords do not represent the correct terms
that are genuinely used in the respective language.

Additionally, localized URLs are not considered when deciding on discovered URL relevance. For
instance, the English URL https:^/example.com/login would be matched, but the localized
German URL https:^/example.com/anmelden would not.

Geofenced Content

Sites serving regionally-specific content or outright blocking some regions from accessing their
content constitutes another limitation that was observed during the crawl, as section 6.4.1
discusses. Because the crawler VMs were hosted within Germany and had Internet access
through a German ISP, they did not have the same view on the web that a crawler in the United
States, Japan, or China would have. In an increasingly fragmented Internet, one’s geographic
location restricts the reachable and thus examinable content.

A/B Testing and Fluctuating Content

Since the crawler only captures a single snapshot at a specific point in time per site, it may be
subject to A/B testing, temporary content changes, or outages. For example, a website may not
serve the new version of their authentication page to the crawler because it is not assigned to the
respective cohort that the new version is tested on. Some vendors may also link the testing of
new features to a geographic region, effectively creating a stable cohort for behavioral analysis.

86

7 DISCUSSION 7.1 Limitations

Lax Link Discovery Policy

Some operators have unified Single Sign-On (SSO) platforms that may be available at a website’s
subdomain, while others use an entirely different domain name. Some sites use third-party
platforms for authenticating users and making personalized or protected content available to
them. This effectively splits sites into parts that are publicly available and others that are not.
Different providers on different domains may host these two parts. To cover all of these use
cases, the crawler follows links on visited home pages containing keywords in the URL or the
link text, regardless of the link’s final HTTP location. This lax policy has the disadvantage of
making false positives more likely. Unfortunately, this behavior is one of the main reasons why
many false positives are identified in the crawler’s matches.

A related issue is the question of how to deal with third-party sign-in options like the widespread
social login offerings where users authenticate using their Facebook or Google accounts. Whether
passkey support provided by third parties should be included in a dataset is debatable. For this
thesis, an exclusion of third-party authentication was not considered.

7.1.2. False Negatives vs. False Positives

While it cannot be guaranteed that every site using a WebAuthn-based authentication method
is detected, lowering the number of false negatives is the easier of the two misclassification
categories. To optimize the crawling and content analysis components, multiple parts of the
implementation are unit tested with constructed environments, as well as real-life excerpts from
sites that are known to have support for the tested method. In a subsequent step, the matches
generated from a real web crawl corpus can be validated using labeled data, as section 6.3
describes.

Lowering the number of false positives is more complex because it involves manual effort in
verifying results. Unit tests covering the investigated cases could be added to the implemen-
tation. However, reducing the number of misclassifications on other sites based on matching
code that exists in a website’s JS code, but is never executed, is significantly more challenging
than adding new matching rules to cover previously unconsidered indicators of support. Differ-
entiating between legitimate SSO platforms hosted on other domain names and unrelated web
services is also difficult. Furthermore, no dataset exists listing websites not supporting particular
authentication methods, which could be used to validate crawl data matches automatically.

7.1.3. True Positives vs. True Negatives

Besides validating results automatically using labeled data, verifying a true positive classification
is possible by manually investigating the website in question. If the crawler was able to detect
some pattern in the publicly available HTML or JS, manual examination should yield the same
result. The same is not true for true negatives, as it is impossible to prove that a site does
not use a particular authentication method. As section 7.1.1 mentions, sites may split their
JS resources into chunks and serve the relevant HTML and JS portions only in some arbitrary
situation, for instance, after a user successfully authenticated with their first factor in an MFA
flow. Due to the potential for such unpredictable behavior, it is not possible to determine that
a site is not using a specific method with absolute certainty.

87

7.2 Overcoming Hurdles 7 DISCUSSION

7.2. Overcoming Hurdles
This section examines numerous obstacles encountered during implementation, deployment,
crawling, and analysis and describes how they were overcome.

7.2.1. Infrastructure

When deploying the designed system and performing the web crawl, several infrastructure-
related issues occurred.

IPv6-related Issues

Because of the deployment environment’s quirks, numerous problems occurred that would pre-
sumably not have arisen in another environment. As outlined in section 5.3.1, the OpenStack
tenant had access to a single dual-stack network with a private IPv4 address and a public IPv6
address. The IPv4 network was present, but was not able to route any egress packets. At the
same time, the tenant had restrictions in place that prohibited creating software-defined internal
networks and routers, which is one of OpenStack’s core functionalities.

The first challenge related to the described broken dual-stack network stack was to get elemen-
tary OS components to work properly. To install any software, the package managers needed to
be able to update their indexes and download packages from the Internet. As some signing keys
required for downloading packages from custom apt repositories were only accessible via IPv4
on keyserver.ubuntu.com, installing all packages required setting up a NAT64 environment
with DNS64 address translation, as detailed in section 5.3.2.

It had been initially planned to deploy containerized software components using Docker images
and Docker’s container engine. After performing several tests, experiencing odd behavior, and
studying the available documentation closely, it became apparent that Docker’s experimental
IPv6 support [57] caused more issues and additional effort than the benefits of containerization
were worth. After all, the deployment on dedicated VMs was automated with Ansible anyways,
so running the software directly at application level on the VMs made sense.

While RabbitMQ has decent documentation on the networking options required to listen to
IPv6 interfaces [186], working out IPv6 connectivity for Java-based Cassandra and its monitor-
ing companion JMX Exporter was more challenging. Because no proper documentation could
be found, the first approach was to filter all A record responses out of the NAT64 gateway DNS
server’s responses using BIND 9’s filter-a module. As BIND 9 also created and served NAT64-
based AAAA records for any IPv4-only hostnames, this could have solved the issue of software
preferring IPv4 addresses if both options were available. Unfortunately, the filter-a module
seemed to have been applied before DNS64, which resulted in IPv4-only hostnames not getting
filtered. The second attempt was to modify the Ansible deployment, removing all IPv4 routes
from the VMs and disabling IPv4 connectivity entirely. While this helped with some of the over-
all experienced connectivity issues, Cassandra and JMX Exporter were still not communicating
with other hosts. After more research, it turned out that the Java Virtual Machine (JVM) for
both components required the additional startup option -Djava.net.preferIPv4Stack=false.
While this change allowed the Cassandra instances to finally communicate, the JMX Exporter
still was not able to bind to any interfaces. Ultimately, it turned out that JMX Exporter needed
the additional JVM startup option -Djava.net.preferIPv6Addresses=true.

88

7 DISCUSSION 7.2 Overcoming Hurdles

Logs Filling Disks

After running one of the preliminary stress tests over an extended period of time, it became
apparent that the default OS log rotation policies could become a problem with the intended
use case. Figure 16 shows how the crawler VMs filled their disk throughout the stress test, until
the instances became fully unresponsive. The crawler’s systemd service had filled the syslog
file until the default-sized 12GiB VM root disk was full. Because the default logrotate cron
job only runs daily and the default rsyslog configuration rotates syslog weekly, retaining four
versions, the crawlers would have potentially filled their root disks during a long-running crawl
operation, too. Hence, the rsyslog and logrotate cron job configurations were modified to
rotate logs hourly based on file size instead of creation date. Retaining old versioned log files
was disabled and the file size limit was set to 100MiB. Fortunately, this limitation was already
discovered through testing before beginning the extensive web crawl.

Figure 16: VM Disk Usage During and After Stress Test

Debugging a Distributed System

When debugging the first complex issues that included multiple instances and were partly timing-
related, it became evident that debugging a distributed system is quite challenging, even though
monitoring tools instrumented all relevant components. What could have helped is a unified
logging solution that would have allowed tracing errors over multiple instances and software
stacks. However, the cumulative amount of logging data would have required additional storage
resources, which were limited by a fixed quota in the deployment environment.

7.2.2. Browsers and their Complexity

As section 6.1.2 describes, remote-controlling software as complex as a full web browser is not
trivial. This section examines some of the issues that arose in relations to integrating Chrome
into the crawling process.

89

7.2 Overcoming Hurdles 7 DISCUSSION

Debian’s Chromium Patch to Disable SwiftShader

While working to optimize Chrome’s stealthiness to avoid being caught in some CDN’s or web-
site operator’s over-blocking of automated visits, which section 4.5 details, a renderer-related
issue occurred on the deployed VMs’ Chromium. It was not reproducible on a personal client
running both Chromium and Google Chrome on macOS. Basically, the browser’s WebGL 3D
rendering API was not working, which caused the browser’s bot detection results (fig. 3) to
be suspicious. After extensive research, it turned out that the Chromium package in Debian’s
standard repository ships with a manual patch disabling SwiftShader support [73]. Because
SwiftShader was not available, there was no WebGL driver available. Thus, WebGL support was
missing, which was flagged as suspicious client behavior. Ultimately, the issue could be resolved
by installing Google Chrome from Google’s apt repository, replacing the standard Chromium
package. Google’s browser did not include any patches that would disable SwiftShader, which
resulted in proper WebGL support.

Dying Workers

During the crawl, the number of dynamic crawler workers started to continuously decrease at
some point after starting the crawler service on the instance. While other causes could remain
undiscovered, one reason became clear after investigating the crawler’s logs. If a single page load
was not completed within five seconds, or the entirety of a targeted site was not crawled within
20 minutes, a timeout was triggered to prevent wasting time on exceptionally slow websites and
to protect against crawler traps, which are explained in section 2.2.1.

If a long-running operation should be aborted in Go, its context can be canceled. The operation
then aborts and returns a context canceled error. Normally, cancellation propagates to any child
contexts, but not to the parent context. It remains unclear why this happened, but when the
request operation timed out, and its context was canceled, chromedp closed the entire browser
tab associated with the worker goroutine. However, a worker’s main goroutine intentionally used
a parent context to manage the state of its dedicated browser tab. When chromedp closed the
tab, the worker was placed into an undefined state, which resulted in a fatal error on the next
browser-related operation, where the worker ceased to process crawling tasks. As a workaround
that was necessary for a disk space leakage issue discussed in the following, every dynamic
crawler was restarted every 120min, which also revived the dead workers.

Chromedp Disk Space Leakage

After discovering that log files could potentially fill the crawlers’ disks, as discussed in sec-
tion 7.2.1, the VMs’ disk usages were closely monitored when starting the crawling process.
While the static crawler instances had no problem with increasing disk usage, something seemed
to hog disk space on the dynamic crawler instances. After examining the file system of several
VMs, it was found that a considerable amount of Chrome and chromedp-related files in the
machine’s /tmp/ directory had accumulated. The files followed the two patterns /tmp/.com.↩
↪google.Chrome.JxpSF6 and /tmp/chromedp-runner1324742760, where the suffix represents a
unique identifier that differed for every file. The former represents the user data directory for
every started Chrome process mainly used to store cached data, while the latter appears to be
a chromedp-related file cache.

Unfortunately, this disk space leakage seems to be a bug in the chromedp library and was mit-
igated using the previously mentioned workaround of stopping every dynamic crawler instance

90

7 DISCUSSION 7.2 Overcoming Hurdles

every 120min, performing a clean-up operation that deletes all residual temporary files, and
restarting the workers. The duration was chosen based on the observed leakage rate.

Chromedp Event Listener Race Conditions

During the crawl, several errors occurred where the crawler was not able to receive the bytes
of resource responses received by Chrome. On any dynamic crawler visit, the page’s DOM was
extracted from the browser directly, while any additionally loaded resources like JS files were
intercepted using the network tracing DevTools API and received through events.

Unfortunately, the EventResponseReceived event, which contains the requested URL and HTTP
response status code, does not guarantee that the response body is readable yet. The Event-
LoadingFinished event guarantees readable response bytes, but it does not contain any reference
to the requested URL and HTTP response status code. Thus, the crawler had to listen to both
events to combine the two sets of information for every fetched response. After navigating to the
targeted page URL, the crawler waited until all concurrently running event handler goroutines
had finished processing events. However, because the delivery of events occurs asynchronously,
the EventLoadingFinished event sometimes was only triggered after the page visit was already
concluded, and the worker had moved on to its next crawl operation. When the event han-
dler processed the old event, it was not able to access the response bytes, which produced the
observed error.

The solution for this problem was to implement an atomic counter that was increased on ev-
ery EventResponseReceived event. Whenever a EventLoadingFinished event was received, the
counter was decremented. The main worker goroutine then blocked until the counter was re-
duced back to zero, indicating that every EventLoadingFinished was received. Additionally, a
timeout was added to prevent potential deadlocks over the counter in case an error occurred
in Chrome’s event processing. After the counter stopped blocking, the worker was blocked as
before, waiting for every event handler to finish.

Auto-Accepted Downloads

Like with Chrome’s temporary files, the browser’s default behavior of auto-accepting file down-
loads when the Content-Disposition: Attachment HTTP header is present also caused some
of the crawler instances to fill up their disk. It had not been considered that the default behavior
would be to accept and store downloads in the user’s home directory. Fortunately, a chromedp
configuration parameter for starting Chrome can be used to set the default download behavior
to Deny, which resolved the issue.

7.2.3. Message Broker Complexity

Chrome is not the only piece of complex software within the crawler’s architecture. For instance,
when working on the crawler software and implementing concurrent task processing, only one
worker goroutine did any work. This behavior had two individual causes. First, the initial draft
used one AMQP channel to communicate with RabbitMQ per crawler instance. However, a
single channel is not supposed to be used concurrently, which caused all other goroutines to
block when the first goroutine used it to consume a queue.

After refactoring the code to open one unique channel per goroutine, all workers still idled except
for one. It turned out that RabbitMQ limits prefetching to 250 messages by default to optimize

91

7.2 Overcoming Hurdles 7 DISCUSSION

performance, which caused the first worker to hog all available testing tasks. This was not
a huge issue – but it highlighted a potential problem with preserving the crawling order. As
the number of pages that could be crawled was not known beforehand, the order of domains
on the targeted popularity list should be preserved to ensure increasing coverage without any
gaps between domain ranks. If the default prefetch count were used, there was a potential for
significant gaps between ranks when stopping the crawl without completing the entire list of
targeted domains, which is what ultimately happened. To roughly estimate the maximum gap
size, let the number of static crawler instances be 5 with 30 concurrent workers each and let the
number of dynamic crawler instances be 10 with 25 workers each. Equation (5) shows that a
prefetch count of 250 could result in a gap in the list of crawled sites of up to 100,000 domains.
Thus, prefetching was disabled to preserve the rank order in the crawled data.

(5× 30 + 10× 25)× 250 = 100,000 (5)

7.2.4. The Wild West of the Web

Because of the various ways websites are built, often forgoing standards and best practices, parts
of the web resemble a place without rules, like the Wild West.

Data Scheme URLs

Typically, hyperlinks on the web point to a URL that users can visit by clicking on the associated
anchor tag’s label. Section 7.1.1 discusses that some developers replace traditional hyperlinks
with event-based JS magic to redirect users. However, the opposite scenario also exists, where
an anchor tag has a href attribute, but it does not contain a URL. Instead, a different scheme
is used to repurpose the anchor tag. There are benign examples, like using the tel: or mailto:
schemes that are used to allow users to call a phone number or compose an email to a specific
address. But it is also possible to place arbitrary data in URI attributes using the data scheme.
This has legitimate use cases, like inlining a small picture into an image tag’s src attribute to
avoid an additional HTTP request. Theoretically, a data scheme URL can contain any type of
data. To identify the content type, a MIME type can prefix opaque data. Apparently, some
website operators use this fact to place JS code into an anchor tag’s href attribute that is
executed when the user clicks on the anchor tag. This behavior was discovered during the crawl
because the crawlers tried to visit these URLs, and the issue was mitigated by filtering the
discovered URLs by their scheme. Nonetheless, a total of 68,188 unique data scheme URLs
from 9,192 sites were found in the resulting content corpus. While some sites appear to use this
technique to track clicks, the motivation is unclear for others. Because of the high number of
sites, it is conceivable that a shared JS library uses this approach to encapsulate custom click
behavior. Even though no evidence of abuse was found in the examined samples, using JS in an
anchor tag’s href attribute can also be used by malicious actors to perform cross-site scripting
attacks.

Detecting Content Types

Not all links on a website point to another HTML document on the web. Sometimes, files
like PDFs or images are linked instead. Also, when websites reference URLs as script sources,
the returned response does not always have the expected content type. That is also true for
the Content-Type header in a HTTP response. As a result, data of an unexpected type is

92

7 DISCUSSION 7.2 Overcoming Hurdles

served. Trying to detect the content type of a raw byte response is difficult. For example,
guessing the MIME type of a JS response containing non-ASCII characters can result in a
generic application/octet-stream classification. When testing different implementations to
guess the MIME type of fetched responses, for instance, with the http.DetectContentType()
method in Go’s standard library, it was found that the misclassification rate is so high that
guessing did not provide any usefulness.

String Encoding

At the very beginning of the crawl, an error occurred where the response from Google’s home
page could not be saved to Cassandra with an error message saying “String didn’t validate.”
Fortunately, this error occurred early and was discovered, as it prompted an exploration of
string encoding in the first place. The reason why the content could not be saved is that
Google’s web server encoded the response using ISO-8859-1, but it was tried to save the content
as UTF-8. An easy solution is to change the column type from string to blob, but if the content
was to be analyzed and matched, it was important that no encoding errors prevented a matching
rule from applying. As it turns out, some sites do not even specify which encoding they used
for their response. Hence, a dedicated string transcoding component was implemented that
looks up the charset from the HTTP response headers, or guesses the charset if the web server
does not specify one. Before the content was stored and processed, it was transcoded from its
original encoding to UTF-8. In case an exotic encoding that could not be transcoded appeared,
the column type was changed to blob to prevent possible storing errors, nonetheless.

Response Sizes

Something that was also discovered because of a database error was the enormous amount of
data some websites serve in the form of singular HTML or JS responses. The related database
limitations are discussed in section 7.2.5.

The latest Web Almanac report places the median page weight for HTML content at 31 kB, and
at 509 kB for JS [93]. In contrast, one single JS response returned from https:^/portal.forter↩
↪.com/dist/app-07439ecfb5a1e2a72f0847e7ee839f859465a422.js had a size of 28.7MB. That
is 564-times more data in a single file. Upon inspection, it became clear that the operator had
shipped the development build of a mid-sized Angular SPA codebase that did not use purg-
ing unused code, minifying, or chunking. The file also contained the source code of numerous
third-party JS dependencies. Interestingly, the URL shows that versioning and cache busting
are used, which is unusual when not using proper production builds.

Another example is the HTML response returned from https:^/clay.run, which had a size
of 20.4MB. That is over 658-times more than the median HTML response. At the time of
writing, the website serves a significantly smaller response with 763 kB in size, which indicates
the operator recognized their mistake and mitigated the issue.

7.2.5. Database Limitations

As mentioned in sections 3.2.2, 6.1.2 and 7.2.4, during and after the crawl, several issues occurred
that are related to the way the Cassandra wide-column store was used in the crawler architecture.
This section examines these problems and their causes.

93

7.2 Overcoming Hurdles 7 DISCUSSION

Maximum Key Sizes

After a few thousand sites had been crawled, it became evident why Bahrami et al. chose to use
hash values of visited URLs as row keys [18]. This was not considered when initially designing the
crawler, but many URLs linked on the web have a long list of parameters, tracking information,
and opaque data attached to them, making them quite long. A text column in Cassandra has a
maximum size of 2GiB, which would allow for an excessively long string. However, Cassandra’s
maximum key size is 64KiB to optimize performance, which is reasonable. Hence, using long
URLs as partition keys can quickly become problematic. As a result, Bahrami et al.’s approach
was adopted to mitigate the issue after realizing the mistake. Every row then used the URL’s
hash as a partition key and contained the unhashed URL in a simple text column since the URL
is essential for subsequent content analysis.

Maximum Request and Commit Log Sizes

The size of responses saved to Cassandra were perhaps the most drastic problem in the crawler’s
architecture. As described in section 7.2.4, some sites serve excessively large amounts of data.
Storing these large responses revealed some of Cassandra’s limits. The documentation states that
it is possible to store blobs of up to 2GiB, although it recommends to keep them under 1MiB [53].
Unfortunately, this advice was not taken seriously enough while planning the architecture. More
thorough research could have discovered that, on another page, their website points out that
Cassandra is not optimized for large blobs of data and that the maximum query request and
commit log sizes would become a bottleneck [177].

The first error occurred during the crawl, when a larger number of small responses from one
site were sent to Cassandra to be persisted using the CQL Go client’s saveMany method. As
it turned out, saveMany sends a single request containing multiple rows of data. The initial
solution was to change the implementation to save every response individually to avoid hitting
the yet unbeknown request size limit. In an attempt to optimize the duration of storage opera-
tions, several inserts were performed in parallel, as the documentation suggested. However, the
Cassandra instances became unresponsive repeatedly, so the change was reverted. In hindsight,
the blob sizes presumably overstrained the instances.

After discovering that some responses exceeded the maximum CQL query limit of 16MiB and
how this limit relates to the commit log size limit, which must be at least double the maximum
request size, Cassandra’s configured limits were adjusted, including doubling the maximum
frame size to 32MiB. The crawler implementation was also modified to discard any responses
larger than 28MiB, leaving a buffer for the additional metadata saved with the response. The
tradeoff was that some sites may not be matched because their content could not be processed.
Fortunately, after implementing the response size limit, no error related to the response size was
logged, indicating that this restriction did not affect the subsequent content analysis.

Backup Process: Readout Speed

The real performance penalty of storing large blobs in Cassandra became apparent after the
dispute with bwCloud personnel forced interrupting the crawl. Since, at the time, it was not clear
whether the environment could still be used for data analysis, a backup process was implemented
and data was migrated off-site. Initially, when trying to extract data from Cassandra using its
bulk exporter, the instances crashed repeatedly. Since this approach did not seem feasible,
custom implementation was added to the crawler’s source code, subsequently querying paged

94

7 DISCUSSION 7.3 Unexpected Findings

content for every visited domain and storing it locally on a solid state drive. Because the
content corpus was already sized at multiple TiB without having completed the entire crawl,
responses were compressed using Zstandard (Zstd), which is a fast compression algorithm that
provides high compression ratio and was open-sourced by Facebook [50]. By using Zstd, all
collected responses of the visited 624,780 sites along with metadata take up little over 1TiB.
The response metadata was saved in a CSV file per site. The logged errors were saved in an
additional CSV file per site. To avoid overstraining the filesystem by having too many directories
on the same level, the data folders for every site were combined using a hostname hash prefix,
following a similar approach to HIBP’s k-Anonymity buckets [90].

When querying a paginated list of the responses for a specific hostname, it became clear that
Cassandra performs significantly worse when reading large blobs compared to writing. Consid-
ering that Cassandra is not optimized to handle large blobs, Figure 11d in section 6.1.2 shows
that write operations performed exceptionally well with a duration of largely under 250ms in
the 99th percentile. In comparison, reading responses for a hostname took 52.5 s in the 99th

percentile, with a mean value of 11.6 ± 11.8 s. In the 10th percentile, queries took 1.6 s, the
minimum duration was 28ms. Although the queries were performed over the Internet instead
of within a virtualized network, which significantly increased latency, sample queries performed
on hosts within the deployment environment showed similarly poor read performances.

Thundering Herd: Backup Process

To speed up the data migration, the exporting implementation used multiple goroutines to
concurrently query for data. The optimal number of 25 concurrent goroutines was determined
experimentally. Numerous errors occurred during the backup process, which ran for several
consecutive days. They were either related to connection issues or large blobs overstraining
the Cassandra instances. The exporter performed a local presence test before sending a query
to avoid duplicate queries. Initially, any CQL error triggered a simple restart of the exporter,
which caused all 25 concurrent goroutines to request the responses for a hostname. That caused
a thundering herd problem where the Cassandra instances were overwhelmed by the amount of
concurrent requests. That caused errors, which caused more concurrent requests. To mitigate
this problem, the exporter implementation was modified to slowly ramp up the number of
concurrent requests, which successfully resolved the issue.

7.3. Unexpected Findings
While examining the content collected during the crawl, several striking patterns and behaviors
were found in the data that are presented in this section.

7.3.1. Extensive Link Collections

When specifying the crawler, it was not anticipated that some sites would contain an extensive
collection of links on their home page that matched a discovering rule for authentication URLs.
The three largest link collections are explored in the following. These examples demonstrate
why it is challenging to discover sign-in pages on websites without considerable overmatching.

The third-largest link collection with a total page count of 275 appeared on elektroniczne↩
↪zapisy.pl, which appears to be a platform where users can sign up for sporting events. Because
the events’ registration forms are accessed using URLs like /event/8559/signup.html, these

95

7.3 Unexpected Findings 7 DISCUSSION

URLs were all visited by the crawler. However, not all of the 274 discovered links on the
home page were falsely discovered. The URLs /login.html and /registration.html indeed
corresponded to the website’s user login and registration forms. Content analysis discovered
a password form on both pages, which was confirmed by manual examination. The needlessly
visited URLs did not skew the results, though, as no authentication method was detected on
any other page.

The second-largest collection of links was found on justdeleteme.xyz, with a total page count
of 318. JustDeleteMe hosts a community-curated list of links that visitors can follow to delete
their account from web services, which employ dark patterns to hide account deletion options
from their users. Obviously, many links on the page have relevant keywords in their URL that
are matched by the crawler’s URL discovery component. This is a clear example of links on a
home page that do refer to some account management pages, but are not associated with their
origin.

The largest total page count of 362 unique URLs was found on dnscentral.com, the website
of a domain registrar and DNS provider. Similar to the first example, the better part of the
discovered URLs on the site refer to domain registration, not user registration. The discovered
URLs mostly have a pattern similar to /registration/tld/com. The visited URLs do not
skew any results because no authentication methods could be detected on those URLs. The
only match for password-based authentication appeared on /registration/renew, which was
manually confirmed to render a sign-in form before a visitor is able to register a new domain.
The site does actually have a dedicated “Account Management” link on their home page, but
the response rendered a screen providing the option to sign into a domain registration account
or a managed DNS account, indicating that the site may be splitting its user base by a user’s
utilized offerings. Because the crawler is narrowly scoped and only crawls to a depth of 1, the
linked sign-in forms were not reached.

7.3.2. Amazon Links

Other interesting finds were accumulating authentication method detections that occurred on
a URL under the www.amazon.com domain for sites that simply linked to Amazon on their
home page. It can be assumed that such misclassifications also occurred for other sites in the
analyzed data. As section 7.1.1 explains, this is the result of a too lax URL discovery policy.
After examining several samples, it became apparent that these sites either linked to individual
Amazon seller profiles or items available for purchase.

For example, the operator of anikasdiylife.com linked to their Amazon seller profile. These
Amazon profile URLs seem to have a common pattern: https:^/www.amazon.com/ideas/amzn1↩
↪.account.XXX/XXX. These URLs got matched because of the “account” keyword.

Another example is the blog daddytypes.com, which linked to a stroller available for purchase
in one of the blog posts. Interestingly, this URL and others like it on different sites in the
corpus were only matched because of a tracking parameter in the URL: http:^/www.amazon↩
↪.com/^^.Stroller-Base-Black^^./?^^.&ref_=nav_signin. The ref_ parameter presumably
indicates that the user clicked on the sign-in button in the navigation bar before viewing the
product. Because the blog author probably copied the URL from their browser’s navigation bar,
the tracking parameter was included in the link on the blog post.

96

7 DISCUSSION 7.4 Future Work

7.3.3. Conditional Rendering Makes HTML Detection Rules Difficult

In terms of false positives, Section 6.4 shows that the Conditional UI detection rule is more
reliable than JS-based rules. However, it was observed that a small number of websites only
render the relevant autocomplete parameters on HTML input in specifically targeted browsers.
When manually visiting sites that verifiably supported passkey authentication in Firefox, a
handful did not have the webauthn keyword in their input autocomplete parameters, even though
they included it in Chrome and Safari. This may be a reason why the static crawler was only
able to identify two sites that had Conditional UI.

The conditional rendering of autocomplete parameters is unfortunate for several reasons. It not
only makes the automatic detection of passkey support more challenging – allow-listing clients
also hurts a website’s usability. Users then rely on the website providers to add their browser
of choice to an arbitrary allow list, even though the browser may have added passkey support
without the website operator being aware. In addition, the reasoning is not comprehensible
because unknown autocomplete keywords are typically just ignored by browsers. Thus, always
adding the relevant autocomplete parameter does not have any disadvantages. If the browser did
not support credential discovery, the user would not notice any difference in the sign-in form’s
behavior. It is possible that sites use the isUserVerifyingPlatformAuthenticatorAvailable
method on the PublicKeyCredential interface to determine if platform-specific authenticators
like Touch ID, Face ID, or Windows Hello are present on the client. However, this would still
not make any sense for the above reasons.

In a web crawling context, this behavior narrows the choice of a web browser to use for visiting
sites if maximum coverage is a goal. Basically, there is no reasonable choice besides using a
Chrome-based browser.

7.3.4. Websites May Detect Failing Image Rendering

One of the measures to optimize performance for the dynamic crawler was to intercept all network
traffic and block stylesheets, images, and videos from loading. While examining the crawled
content, the website wowhead.com was found to detect whether clients successfully load their
images and JS resources. Because the crawler blocked the image requests, the website redirected
the client to an error page32 at https://www.wowhead.com/error-static-cdn, explaining that
loading their static CDN content had failed. It was thus not possible to fetch the site’s actual
HTML.

While no other instance of such behavior was identified, this case nonetheless indicates that
optimizing performance by limiting a website’s ability to load content may have unintended side
effects that should be considered.

7.4. Future Work
This thesis proposed utilizing a distributed web crawler to automatically identify websites sup-
porting phishing-resistant authentication methods. This section offers several suggestions on
what could be improved in future research approaches.

32The page was archived at https://web.archive.org/web/20230626145123/https://www.wowhead.com
/error-static-cdn

97

https://www.wowhead.com/error-static-cdn
https://web.archive.org/web/20230626145123/https://www.wowhead.com/error-static-cdn
https://web.archive.org/web/20230626145123/https://www.wowhead.com/error-static-cdn

7.4 Future Work 7 DISCUSSION

7.4.1. Architectural and Infrastructural Improvements

Before collecting any content or analyzing it, there are some vital improvements that could be
made to the crawler’s architectural and infrastructural design.

Unified Logging

Whenever errors occurred during initial tests or the web crawl, it was challenging to debug how
multiple components in a distributed system interacted and to find causal relationships between
individual behaviors. Even though the system was well-instrumented, examining logs that were
bounded to the respective host VM was sometimes challenging. A unified logging solution
would have improved this situation dramatically. Therefore, it is advisable for future work to
plan central logging collection from the outset to avoid sifting through logs on all instances to
find that one process experiencing errors.

Detect Database Limits Early On

Another shortcoming of the presented architecture was the database performance for large con-
tent blobs. Testing the intended use case in its entirety would have flagged potential issues early
on. Unfortunately, extensive tests were only performed for the first half of the use case: stor-
ing exemplary crawled content. If reading responses from the database for analysis would have
been tested in the initial implementation phase, modifying the architectural storage components
would still have been feasible.

7.4.2. Improve Authentication URL Detection

Several approaches could improve the detection of authentication-related URLs and reduce the
rate of false positives.

Detect Content Management System

A promising approach to discovering the URL of sign-in forms could be to detect the utilized
Content Management System (CMS) and try to navigate to the CMS’ default login path. As
there is a small number of profoundly popular CMSs, compiling a suitable list of URLs is
manageable. However, there is the question of whether the CMS login is actually the avenue
used by users to authenticate. In the examined crawl dataset, multiple sites were found to use
one of the popular CMSs for their website, but used a different software product to authenticate
customers and let them access some kind of internal content that is not served using the site’s
CMS. Thus, it is possible that this approach could lead to false positives.

Improve Multi-Language Support

As section 7.1.1 describes, the crawler’s implementation is able to detect localized login link
labels through automatically translated keywords. This detection could be improved by using
verified translations since automated results are likely to be of worse quality and use the wrong
wording. For instance, the Polish sporting events platform mentioned in section 7.3.1 rendered
a login link with the label “Zaloguj się”, while the automatically translated Polish keywords are
“zalogować się” and “zarejestruj się”. This particular link was still discovered due to an English
keyword in the URL. However, some sites may use localized keywords in their URLs, which the

98

7 DISCUSSION 7.4 Future Work

current crawler version cannot detect. Hence, adding translations to matched keywords in URLs
in addition to labels would further reduce the inherent language bias.

Ignore Unassociated Linked Content

One of the main causes for an inflated false positive detection rate was the authentication
method detection on linked third-party content not associated with the examined site. When
designing the URL discovery policy, first-party SSO systems on other domains, third-party
“social logins”, and related third-party software like an outsourced customer login were not
supposed to be excluded. Thus, a policy was implemented that matched any hyperlink on
the home page of a website that featured authentication-related keywords in its label or URL.
However, as section 6.4 shows, this lead to numerous misclassifications. To reduce the number
of false positives, a stricter policy could be applied that only considers URLs with the same base
origin33. This would exclude the previously mentioned cases, though.

Deduplicate With Final HTTP Location

For some sites, the same content was stored multiple times because deduplication happened at
URL level after collecting them from the home page. However, any sites linked to unique URLs,
which all redirected to the same final HTTP location. To avoid storing content multiple times, a
second deduplication step according to the final URL after any redirects could be implemented
before storing the responses. Sometimes, URLs with the same origin as the visited home page
also redirected to a different domain, for example, when the site used link tracking. These links
would also have to be discarded with the stricter URL discovery policy. Although, the final
destination’s domain could be classified using the discovered URL instead.

7.4.3. JavaScript Deobfuscation

To improve the detection of obfuscated JS code, it may be possible to study common obfus-
cation techniques and try to reverse them on collected JS resources. There are some projects
like Restringer [21] that try to reconstruct obfuscated JS strings by reversing common obfusca-
tion methods like changing the encoding or splitting a string into multiple subsets and joining
them back together. Listing 9 in section 4.3.2 shows a simple obfuscated call to the browser’s
Credentials interface that could possibly be deobfuscated using similar methods as Restringer.

7.4.4. Improve JavaScript Source Detection for Static Crawler

There are conceivable ways in which the static crawler’s detection rate may be improved. Fig-
ure 12 in section 6.2.2 shows that the static crawler was not able to collect the same number
of JS resources per site when compared to the dynamic crawler. Enabling it to discover more
URLs referencing JS code may help to improve its performance. One way could be to analyze
the JS source files referenced in the HTML and look for indicators for resource chunking. As
most served JS is compiled using only a handful of module bunlders like Webpack [109], it may
be possible to achieve relatively large coverage with little effort. A simpler method could be to
match strings in the JS code that resemble a URL to another JS file and try to crawl it.

33generally the second-level domain

99

7.4 Future Work 7 DISCUSSION

7.4.5. Deduplicate Regionalized And Redirecting Domains

In order to deflate the number of duplicate matches, domains that immediately redirect to
another site that was already visited could be to discarded. During the crawl, many domains like
zohocreator.com and zohocrm.com were found in the list of detected passkey support. However,
these domains redirected to Zoho’s main website, which was then analyzed and counted multiple
times. For future work, it would make sense to consider these cases and discard redirection
domains. This could also be achieved using the aforementioned second deduplication step for
the final HTTP location URL. What is more difficult is to deduplicate regionalized domains like
zoho.com.cn. However, one could argue that regionalized domains that do not directly redirect
to the main website should actually be considered a separate site that can be listed separately.

7.4.6. Detect Common Passkey Libraries

In recent months, several libraries abstracting passkey authentication started to gain popularity,
for instance Hanko [22]. Another way to improve the detection of authentication methods could
be trying to detect usage of one of these libraries, which could indicate a site’s support for
passkeys. Of course, these libraries use the same Credentials API that plain JS implemenations
would, too. But the presence of Hanko’s JS code could be an indicator of higher confidence
compared to a simple navigator.credentials call that could be part of a larger library like
SAP’s Gigya, out of which, presumably, only a small part of the imported code is actually used
on each site.

7.4.7. JavaScript Usage Detection

A significant amount of false positives could be prevented if there was a way to detect whether
the part of a site’s JS code containing a WebAuthn-related browser API call was ever used on
the site or if it was part of dead code that is never executed. This could potentially exclude
false positives like the 547 sites using SAP’s Gigya JS library. However, it is challenging to
reliably detect whether some code in an unknown structure is ever executed. When combining
all JS resources collected from a site and performing a static code analysis, it may be possible
to identify code functions and branches that are never executed, though.

100

8 CONCLUSION

8. Conclusion
This thesis presented the first iteration of a distributed web crawler aimed at detecting the
use of authentication methods to measure the adoption of phishing-resistant authentication on
the web. It described architecting, implementing, and deploying the crawler and provided a
comprehensive analysis of the resulting content corpus.

R1 posed the question of whether automatic authentication method detection was possible with
reasonable accuracy. The results showed that it is indeed feasible to detect specific authentica-
tion methods through automatic content matching. However, the accuracy significantly varied
across applied matching techniques. While DOM-based matching of HTML documents pro-
duced considerably fewer false positives compared to Regex-based matching of JS resources, the
coverage rate is lower because WebAuthn-based MFA does not involve any HTML and sites
supporting passkeys, i.e., discoverable multi-device FIDO credentials, are not required to use
any HTML-based Conditional UI. The quantitative result validation showed that there is still
potential for improvement in detection, as only 51.85% of the sites labeled by a validation
dataset (N = 27) were automatically identified to use some form of WebAuthn-based authen-
tication. The qualitative analysis showed that the high number of false positives was mainly
caused by a too lax URL discovery policy and third-party JS resources that included code using
the WebAuthn API, which was not used on the visited sites.

With respect to R2, which asked whether the detection rate differed for static and dynamic
web crawling, the results showed that a dynamic crawler, which can render client-side rendered
content, is superior in collecting relevant content compared to traditional HTTP client-based
content scraping. As the web is increasingly based on client-side rendered applications, crawling
static content does not discover many JS resources that are available when intercepting real web
browser traffic. In addition, the use case discriminates against static crawling since WebAuthn
is a JS-based browser API.

In conclusion, this work has demonstrated that the automatic detection of phishing-resistant
authentication on the web is possible. Even though certain aspects have the potential for
optimization, the proposed method can help monitor the development towards more widespread
adoption. A passwordless future is desirable because password-based authentication places an
unnecessary burden on users and enables some of the most common attacks, like phishing and
credential stuffing. With major technology corporations’ recent endorsement of FIDO-based
authentication, there is hope that passwords may soon be a thing of the past.

Revision f919c403f33d4e90cc3e46b1dee60c8c1a80d779 on branch main

101

References
[1] 3rd Generation Partnership Project (3GPP). Technical Realization of the Short Message Service

(SMS). Technical Specification 23.040. 1999.
[2] Lawrence Abrams. “MFA Fatigue: Hackers’ New Favorite Tactic in High-Profile Breaches”. In:

BleepingComputer (Sept. 20, 2022). url: https://www.bleepingcomputer.com/news/security/
mfa-fatigue-hackers-new-favorite-tactic-in-high-profile-breaches/ (visited on May 25,
2023).

[3] Yurij Ackermann. Introduction to WebAuthn API. Medium. Apr. 9, 2019. url: https://medium.
com/@herrjemand/introduction-to-webauthn-api-5fd1fb46c285 (visited on May 24, 2023).

[4] Yurij Ackermann. Workshop: Authenticating Your Web Like a Boss. 2018. url: https://slides.
com/fidoalliance/jan-2018-fido-seminar-webauthn-tutorial (visited on May 24, 2023).

[5] AgileBits Inc. About Watchtower Privacy in 1Password. Sept. 19, 2022. url: https://support.
1password.com/watchtower-privacy/ (visited on May 17, 2023).

[6] Furkan Alaca, AbdelRahman Abdou, and Paul C. van Oorschot. Comparative Analysis and Frame-
work Evaluating Mimicry-Resistant and Invisible Web Authentication Schemes. Mar. 30, 2019. doi:
10.48550/arXiv.1708.01706. preprint.

[7] Aftab Alam, Katharina Krombholz, and Sven Bugiel. “Poster: Let History Not Repeat Itself
(This Time) – Tackling WebAuthn Developer Issues Early On”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. London, UK: ACM, Nov. 6,
2019, pp. 2669–2671. doi: 10.1145/3319535.3363283.

[8] Junade Ali. Validating Leaked Passwords with K-Anonymity. The Cloudflare Blog. Feb. 21, 2018.
url: https://blog.cloudflare.com/validating- leaked- passwords- with- k- anonymity/
(visited on Jan. 6, 2023).

[9] Amazon Web Services, Inc. Amazon S3 REST API Introduction. Amazon Simple Storage Service.
Mar. 1, 2006. url: https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html (visited
on June 1, 2023).

[10] Amazon.com, Inc. End of Service Notice. Alexa.com. Nov. 19, 2022. url: https://web.archive.
org/web/20221119164239/https://www.alexa.com/login (visited on June 9, 2023).

[11] Olabode Anise and Kyle Lady. State of the Auth. White paper. Duo Security Inc., Nov. 7, 2017.
url: https://duo.com/assets/ebooks/state-of-the-auth.pdf (visited on Jan. 3, 2023).

[12] Apache Software Foundation. Apache Cassandra. url: https://cassandra.apache.org (visited
on June 9, 2023).

[13] Apache Software Foundation. Compression. Cassandra Documentation. Feb. 13, 2023. url: https:
//cassandra.apache.org/doc/4.1/cassandra/operating/compression.html (visited on
Apr. 13, 2023).

[14] Apple Inc. Passkeys. Apple Developer. url: https://developer.apple.com/passkeys/ (visited
on Jan. 5, 2023).

[15] Apple Inc. Spotlight on: Passkeys. Apple Developer. May 15, 2023. url: https://developer.
apple.com/news/?id=mgdnfp8w (visited on May 25, 2023).

[16] Apple Inc. Supporting Passkeys. Apple Developer Documentation. url: https://developer.
apple.com/documentation/authenticationservices/public-private_key_authentication/
supporting_passkeys (visited on Jan. 5, 2023).

[17] Ricardo Baeza-Yates and Carlos Castillo. “Crawling the Infinite Web”. In: Journal of Web Engi-
neering 6.1 (Oct. 30, 2007), pp. 049–072. issn: 1544-5976.

[18] Mehdi Bahrami, Mukesh Singhal, and Zixuan Zhuang. “A Cloud-Based Web Crawler Architec-
ture”. In: 18th International Conference on Intelligence in Next Generation Networks. Paris,
France: IEEE, 2015, pp. 216–223. doi: 10.1109/ICIN.2015.7073834.

[19] Luke Bakken et al. Pika. Version 1.3.2. Pika, May 5, 2023. url: https://github.com/pika/pika
(visited on June 13, 2023).

[20] Chris Bannister et al. Gocql. Version 1.3.2. Apr. 13, 2023. url: https://github.com/gocql/gocql
(visited on Apr. 13, 2023).

[21] Ben Baryo. Restringer. Version 1.7.1. June 6, 2023. url: https://github.com/PerimeterX/
restringer (visited on June 13, 2023).

102

https://www.bleepingcomputer.com/news/security/mfa-fatigue-hackers-new-favorite-tactic-in-high-profile-breaches/
https://www.bleepingcomputer.com/news/security/mfa-fatigue-hackers-new-favorite-tactic-in-high-profile-breaches/
https://medium.com/@herrjemand/introduction-to-webauthn-api-5fd1fb46c285
https://medium.com/@herrjemand/introduction-to-webauthn-api-5fd1fb46c285
https://slides.com/fidoalliance/jan-2018-fido-seminar-webauthn-tutorial
https://slides.com/fidoalliance/jan-2018-fido-seminar-webauthn-tutorial
https://support.1password.com/watchtower-privacy/
https://support.1password.com/watchtower-privacy/
https://doi.org/10.48550/arXiv.1708.01706
https://doi.org/10.1145/3319535.3363283
https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://web.archive.org/web/20221119164239/https://www.alexa.com/login
https://web.archive.org/web/20221119164239/https://www.alexa.com/login
https://duo.com/assets/ebooks/state-of-the-auth.pdf
https://cassandra.apache.org
https://cassandra.apache.org/doc/4.1/cassandra/operating/compression.html
https://cassandra.apache.org/doc/4.1/cassandra/operating/compression.html
https://developer.apple.com/passkeys/
https://developer.apple.com/news/?id=mgdnfp8w
https://developer.apple.com/news/?id=mgdnfp8w
https://developer.apple.com/documentation/authenticationservices/public-private_key_authentication/supporting_passkeys
https://developer.apple.com/documentation/authenticationservices/public-private_key_authentication/supporting_passkeys
https://developer.apple.com/documentation/authenticationservices/public-private_key_authentication/supporting_passkeys
https://doi.org/10.1109/ICIN.2015.7073834
https://github.com/pika/pika
https://github.com/gocql/gocql
https://github.com/PerimeterX/restringer
https://github.com/PerimeterX/restringer

[22] Felix Bause et al. Hanko. Version 0.6.0. Hanko GmbH, Apr. 19, 2023. url: https://github.com/
teamhanko/hanko (visited on May 24, 2023).

[23] Jorge Bay et al. DataStax Node.Js Driver for Apache Cassandra. Version 4.6.4. DataStax Inc.,
July 12, 2022. url: https://github.com/datastax/nodejs-driver (visited on June 13, 2023).

[24] Vittorio Bertocci. Our Take on Passkeys. Auth0 Blog. Aug. 24, 2022. url: https://auth0.com/
blog/our-take-on-passkeys/ (visited on May 15, 2023).

[25] Haren Bhandari and Joe Viggiano. The 2022 Web Almanac: CDN. HTTP Archive, Oct. 13, 2022.
url: https://almanac.httparchive.org/en/2022/cdn (visited on Feb. 28, 2023).

[26] Eric Bidelman. Getting Started with Headless Chrome. Chrome Developers. Apr. 27, 2017. url:
https://developer.chrome.com/blog/headless-chrome/ (visited on June 16, 2023).

[27] Arnar Birgisson. Security of Passkeys in the Google Password Manager. Google Online Security
Blog. Oct. 12, 2022. url: https://security.googleblog.com/2022/10/SecurityofPasskeysin
theGooglePasswordManager.html (visited on May 15, 2023).

[28] Bitdefender SRL. Bitdefender Global Report: Cybersecurity and Online Behaviors. 2021, p. 15.
url: https://www.bitdefender.com/files/News/CaseStudies/study/404/BD- Security-
Behavior-Report-Final-at.pdf+ (visited on May 17, 2023).

[29] Burton H. Bloom. “Space/Time Trade-Offs in Hash Coding with Allowable Errors”. In: Commu-
nications of the ACM 13.7 (July 1970), pp. 422–426. doi: 10.1145/362686.362692.

[30] Paolo Boldi et al. “UbiCrawler: A Scalable Fully Distributed Web Crawler”. In: Software: Practice
and Experience 34.8 (July 10, 2004), pp. 711–726. doi: 10.1002/spe.587.

[31] John Bradley et al. Client to Authenticator Protocol (CTAP). Review Draft v2.2. FIDO Alliance,
Mar. 21, 2023.

[32] John Bradley et al. Web Authentication: An API for Accessing Public Key Credentials. W3C First
Public Working Draft Level 3. W3C, Apr. 27, 2021.

[33] Christiaan Brand and Sriram Karra. The Beginning of the End of the Password. Google. May 3,
2023. url: https://blog.google/technology/safety-security/the-beginning-of-the-end-
of-the-password/ (visited on May 15, 2023).

[34] Christiaan Brand et al. Client to Authenticator Protocol (CTAP). Implementation Draft v2.0.
FIDO Alliance, Feb. 27, 2018.

[35] Brian Brazil et al. JMX Exporter. Version 0.18.0. The Linux Foundation, Mar. 7, 2023. url:
https://github.com/prometheus/jmx_exporter (visited on June 17, 2023).

[36] Michael Bridgen et al. Amqplib. Version 0.8.0. May 19, 2021. url: https://github.com/amqp-
node/amqplib (visited on June 13, 2023).

[37] Sergey Brin and Lawrence Page. “The Anatomy of a Large-Scale Hypertextual Web Search En-
gine”. In: Computer Networks and ISDN Systems 30.1-7 (Apr. 1998), pp. 107–117. doi: 10.1016/
S0169-7552(98)00110-X.

[38] Matt Burgess. “Apple’s Killing the Password. Here’s Everything You Need to Know”. In: Wired
(Sept. 7, 2022). url: https://www.wired.com/story/apple-passkeys-password-iphone-mac-
ios16-ventura/ (visited on May 15, 2023).

[39] William E. Burr, Donna F. Dodson, and W. Timothy Polk. Electronic Authentication Guideline.
NIST Special Publication 800-63v1.0.1. Gaithersburg, MD, USA: National Institute of Standards
and Technology, 2004. doi: 10.6028/NIST.SP.800-63v1.0.1.

[40] Jeff Burt. “Multi-Factor Auth Fatigue Is Real - And It’s Why You May Be in the Headlines
Next”. In: The Register (Mar. 11, 2022). url: https://www.theregister.com/2022/11/03/mfa_
fatigue_enterprise_threat/ (visited on May 25, 2023).

[41] Mathias Bynens and Peter Kvitek. Chrome’s Headless Mode Gets an Upgrade. Chrome Developers.
Feb. 22, 2023. url: https://developer.chrome.com/articles/new- headless/ (visited on
May 15, 2023).

[42] Fay Chang et al. “Bigtable: A Distributed Storage System for Structured Data”. In: ACM Trans-
actions on Computer Systems 26.2 (June 2008), pp. 1–26. doi: 10.1145/1365815.1365816.

[43] Kumar Chellapilla and Alexey Maykov. “A Taxonomy of JavaScript Redirection Spam”. In: Pro-
ceedings of the 3rd International Workshop on Adversarial Information Retrieval on the Web.
Banff, Alberta, Canada: ACM, May 8, 2007, pp. 81–88. doi: 10.1145/1244408.1244423.

[44] Dave Childers. State of the Auth. Duo Labs Report. Cisco Systems, Inc., Sept. 14, 2021. url:
https://duo.com/assets/ebooks/state-of-the-auth-2021.pdf (visited on May 19, 2023).

103

https://github.com/teamhanko/hanko
https://github.com/teamhanko/hanko
https://github.com/datastax/nodejs-driver
https://auth0.com/blog/our-take-on-passkeys/
https://auth0.com/blog/our-take-on-passkeys/
https://almanac.httparchive.org/en/2022/cdn
https://developer.chrome.com/blog/headless-chrome/
https://security.googleblog.com/2022/10/SecurityofPasskeysintheGooglePasswordManager.html
https://security.googleblog.com/2022/10/SecurityofPasskeysintheGooglePasswordManager.html
https://www.bitdefender.com/files/News/CaseStudies/study/404/BD-Security-Behavior-Report-Final-at.pdf+
https://www.bitdefender.com/files/News/CaseStudies/study/404/BD-Security-Behavior-Report-Final-at.pdf+
https://doi.org/10.1145/362686.362692
https://doi.org/10.1002/spe.587
https://blog.google/technology/safety-security/the-beginning-of-the-end-of-the-password/
https://blog.google/technology/safety-security/the-beginning-of-the-end-of-the-password/
https://github.com/prometheus/jmx_exporter
https://github.com/amqp-node/amqplib
https://github.com/amqp-node/amqplib
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.wired.com/story/apple-passkeys-password-iphone-mac-ios16-ventura/
https://www.wired.com/story/apple-passkeys-password-iphone-mac-ios16-ventura/
https://doi.org/10.6028/NIST.SP.800-63v1.0.1
https://www.theregister.com/2022/11/03/mfa_fatigue_enterprise_threat/
https://www.theregister.com/2022/11/03/mfa_fatigue_enterprise_threat/
https://developer.chrome.com/articles/new-headless/
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1244408.1244423
https://duo.com/assets/ebooks/state-of-the-auth-2021.pdf

[45] Junghoo Cho and Hector Garcia-Molina. “Parallel Crawlers”. In: Proceedings of the 11th Interna-
tional Conference on World Wide Web. Honolulu, Hawaii, USA: ACM, May 7, 2002, pp. 124–135.
doi: 10.1145/511446.511464.

[46] Cisco Systems Inc. Duo Mobile. Duo Security. url: https://duo.com/product/multi-factor-
authentication-mfa/duo-mobile-app (visited on May 25, 2023).

[47] Cloudflare Inc. Bot Management & Protection. Cloudflare. url: https://www.cloudflare.com/
products/bot-management/ (visited on May 31, 2023).

[48] Brian Coca et al. Ansible. Version 2.14.6. May 22, 2023. url: https://github.com/ansible/
ansible (visited on June 17, 2023).

[49] Yann Collet et al. Lz4. Version 1.9.4. Aug. 16, 2022. url: https://github.com/lz4/lz4 (visited
on June 19, 2023).

[50] Yann Collet et al. Zstandard. Version 1.5.5. Meta, Apr. 5, 2023. url: https://github.com/
facebook/zstd (visited on June 19, 2023).

[51] Barbara Collins. “Why Passkeys from Apple, Google, Microsoft May Soon Replace Your Pass-
words”. In: CNBC (Feb. 11, 2023). url: https://www.cnbc.com/2023/02/11/why- apple-
google-microsoft-passkey-should-replace-your-own-password.html (visited on May 15,
2023).

[52] Silvia Convento, Court Jacinic, and Becca Shareff. Making Authentication Faster than Ever:
Passkeys vs. Passwords. Google Online Security Blog. May 5, 2023. url: https://security.
googleblog.com/2023/05/making-authentication-faster-than-ever.html (visited on May 15,
2023).

[53] DataStax Inc. CQL Limits. CQL for Cassandra 3.x. Feb. 18, 2022. url: https://docs.datastax.
com/en/cql-oss/3.x/cql/cql_reference/refLimits.html (visited on Apr. 20, 2023).

[54] Lucas Davi et al. “Over-the-Air Cross-Platform Infection for Breaking mTAN-based Online Bank-
ing Authentication”. In: Black Hat. Abu Dhabi, United Arab Emirates, Dec. 6, 2012.

[55] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters”.
In: Communications of the ACM 51.1 (Jan. 2008), pp. 107–113. doi: 10.1145/1327452.1327492.

[56] Alexis Deveria. Web Authentication API. Can I use... url: https://caniuse.com/webauthn
(visited on May 23, 2023).

[57] Docker Inc. Enable IPv6 Support. Docker Documentation. June 16, 2023. url: https://docs.
docker.com/config/daemon/ipv6/ (visited on June 17, 2023).

[58] Jason A. Donenfeld. “WireGuard: Next Generation Kernel Network Tunnel”. In: Network and
Distributed System Security Symposium. San Diego, CA, USA, Feb. 27, 2017. doi: 10.14722/
ndss.2017.23160.

[59] Cristian Duda. “Searching Application Data”. PhD thesis. ETH Zurich, 2009. doi: 10.3929/ETHZ-
A-005844429.

[60] Cristian Duda et al. “AJAXSearch: Crawling, Indexing and Searching Web 2.0 Applications”. In:
Proceedings of the VLDB Endowment 1.2 (Aug. 2008), pp. 1440–1443. doi: 10.14778/1454159.
1454195.

[61] Jon Dugan et al. iPerf. url: https://iperf.fr (visited on June 17, 2023).
[62] Jenny Edwards, Kevin McCurley, and John Tomlin. “An Adaptive Model for Optimizing Perfor-

mance of an Incremental Web Crawler”. In: Proceedings of the 10th International Conference on
World Wide Web. Hong Kong: ACM, Apr. 2001, pp. 106–113. doi: 10.1145/371920.371960.

[63] James Elliott et al. WebAuthn Library. Duo Security, Dec. 5, 2022. url: https://github.com/duo-
labs/webauthn (visited on May 24, 2023).

[64] F-Secure Corporation. Trojan: Android/Crusewind. Threat Descriptions. June 2011. url: https:
//www.f-secure.com/v-descs/trojan_android_crusewind.shtml (visited on May 18, 2023).

[65] Florian M Farke et al. “‘You Still Use the Password after All’ – Exploring FIDO2 Security Keys
in a Small Company”. In: Proceedings of the Sixteenth Symposium on Usable Privacy and Security.
USENIX Association, Aug. 2020, pp. 19–35. isbn: 978-1-939133-16-8.

[66] Florian M Farke et al. “Exploring User Authentication with Windows Hello in a Small Business En-
vironment”. In: Proceedings of the Eighteenth Symposium on Usable Privacy and Security (SOUPS
2022). Boston, MA, USA: USENIX Association, Aug. 2022, pp. 523–540. isbn: 978-1-939133-30-4.

[67] Horst Feistel. “Cryptography and Computer Privacy”. In: Scientific American 228.5 (May 1973),
pp. 15–23. doi: 10.1038/scientificamerican0573-15.

104

https://doi.org/10.1145/511446.511464
https://duo.com/product/multi-factor-authentication-mfa/duo-mobile-app
https://duo.com/product/multi-factor-authentication-mfa/duo-mobile-app
https://www.cloudflare.com/products/bot-management/
https://www.cloudflare.com/products/bot-management/
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://github.com/lz4/lz4
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://www.cnbc.com/2023/02/11/why-apple-google-microsoft-passkey-should-replace-your-own-password.html
https://www.cnbc.com/2023/02/11/why-apple-google-microsoft-passkey-should-replace-your-own-password.html
https://security.googleblog.com/2023/05/making-authentication-faster-than-ever.html
https://security.googleblog.com/2023/05/making-authentication-faster-than-ever.html
https://docs.datastax.com/en/cql-oss/3.x/cql/cql_reference/refLimits.html
https://docs.datastax.com/en/cql-oss/3.x/cql/cql_reference/refLimits.html
https://doi.org/10.1145/1327452.1327492
https://caniuse.com/webauthn
https://docs.docker.com/config/daemon/ipv6/
https://docs.docker.com/config/daemon/ipv6/
https://doi.org/10.14722/ndss.2017.23160
https://doi.org/10.14722/ndss.2017.23160
https://doi.org/10.3929/ETHZ-A-005844429
https://doi.org/10.3929/ETHZ-A-005844429
https://doi.org/10.14778/1454159.1454195
https://doi.org/10.14778/1454159.1454195
https://iperf.fr
https://doi.org/10.1145/371920.371960
https://github.com/duo-labs/webauthn
https://github.com/duo-labs/webauthn
https://www.f-secure.com/v-descs/trojan_android_crusewind.shtml
https://www.f-secure.com/v-descs/trojan_android_crusewind.shtml
https://doi.org/10.1038/scientificamerican0573-15

[68] FIDO Alliance. FIDO Alliance Member Companies & Organizations. url: https://fidoallian
ce.org/members/ (visited on May 18, 2023).

[69] FIDO Alliance. Multi-Device FIDO Credentials. White Paper. Mar. 2022. url: https://fidoall
iance.org/white-paper-multi-device-fido-credentials/ (visited on May 15, 2023).

[70] Lorenzo Franceschi-Bicchierai. “How to Protect Yourself From SIM Swapping Hacks”. In: Vice.
Motherboard (July 17, 2018). url: https://www.vice.com/en/article/zm8a9y/how- to-
protect-yourself-from-sim-swapping-hacks (visited on May 15, 2023).

[71] Vitaly Friedman. “Rethinking Authentication UX”. In: Smashing Magazine. General (Aug. 4,
2022). url: https: // www. smashingmagazine. com/ 2022 /08 /authentication - ux - design -
guidelines/ (visited on May 15, 2023).

[72] Nick Frymann et al. “Asynchronous Remote Key Generation: An Analysis of Yubico’s Proposal
for W3C WebAuthn”. In: Cryptology ePrint Archive, Paper 2020/1004 (Aug. 19, 2020). doi:
10.1145/3372297.3417292.

[73] Michael Gilbert. Package: Chromium - Disable/Swiftshader.Path. Version 111.0.5563.110-1. url:
https://sources.debian.org/patches/chromium/111.0.5563.110-1/disable/swiftshader.
patch/ (visited on Apr. 12, 2023).

[74] Lori Glavin. Apple, Google and Microsoft Commit to Expanded Support for FIDO Standard to
Accelerate Availability of Passwordless Sign-Ins. FIDO Alliance. May 5, 2022. url: https://
fidoalliance.org/apple-google-and-microsoft-commit-to-expanded-support-for-fido-
standard- to- accelerate- availability- of- passwordless- sign- ins/ (visited on Jan. 10,
2023).

[75] Lori Glavin. Cloudflare Embraces FIDO to Help Its Own Security. FIDO Alliance. Mar. 2, 2023.
url: https://fidoalliance.org/cloudflare-embraces-fido-to-help-its-own-security/
(visited on May 15, 2023).

[76] Nico Golde, Kevin Redon, and Ravishankar Borgaonkar. “Weaponizing Femtocells: The Effect
of Rogue Devices on Mobile Telecommunications”. In: Network and Distributed System Security
Symposium. San Diego, CA, USA, Feb. 6, 2012.

[77] Dan Goodin. “Google Passkeys Are a No-Brainer. You’ve Turned Them on, Right?” In: Ars
Technica (May 8, 2023). url: https://arstechnica.com/information-technology/2023/05/
passwordless-google-accounts-are-easier-and-more-secure-than-passwords-heres-why/
(visited on May 15, 2023).

[78] Google LLC. Chrome DevTools Protocol. url: https://chromedevtools.github.io/devtools-
protocol/ (visited on June 9, 2023).

[79] Google LLC. Chrome UX Report. Chrome Developers. url: https://developer.chrome.com/
docs/crux/ (visited on June 9, 2023).

[80] Google LLC. Key URI Format. In collab. with Pier Fumagalli et al. url: https://github.com/
google/google-authenticator/wiki/Key-Uri-Format (visited on Jan. 5, 2023).

[81] Paul A Grassi et al. Digital Identity Guidelines. NIST Special Publication 800-63B. Gaithersburg,
MD, USA: National Institute of Standards and Technology, Mar. 2, 2020. doi: 10.6028/NIST.SP.
800-63b.

[82] Thomas Habets et al. Google/Google-Authenticator-Libpam. Version 1.09. Google LLC, May 26,
2020. url: https://github.com/google/google-authenticator-libpam (visited on May 19,
2023).

[83] Markus Hänel. Puppeteer-Extra-Plugin-Stealth. Version 2.11.2. Mar. 1, 2023. url: https://githu
b.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
(visited on Apr. 12, 2023).

[84] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. “Token Meets Wallet: Formalizing Privacy
and Revocation for FIDO2”. In: IEEE Symposium on Security and Privacy (SP). San Francisco,
CA, USA: IEEE, May 2023, pp. 978–995. doi: 10.1109/SP46215.2023.00056.

[85] Christopher Harrell. YubiKeys, Passkeys and the Future of Modern Authentication. Yubico.
Mar. 31, 2022. url: https://www.yubico.com/blog/passkeys-and-the-future-of-modern-
authentication/ (visited on Jan. 4, 2023).

[86] Mitchell Hashimoto et al. Terraform. Version 1.5.0. HashiCorp, June 12, 2023. url: https://
github.com/hashicorp/terraform (visited on June 17, 2023).

105

https://fidoalliance.org/members/
https://fidoalliance.org/members/
https://fidoalliance.org/white-paper-multi-device-fido-credentials/
https://fidoalliance.org/white-paper-multi-device-fido-credentials/
https://www.vice.com/en/article/zm8a9y/how-to-protect-yourself-from-sim-swapping-hacks
https://www.vice.com/en/article/zm8a9y/how-to-protect-yourself-from-sim-swapping-hacks
https://www.smashingmagazine.com/2022/08/authentication-ux-design-guidelines/
https://www.smashingmagazine.com/2022/08/authentication-ux-design-guidelines/
https://doi.org/10.1145/3372297.3417292
https://sources.debian.org/patches/chromium/111.0.5563.110-1/disable/swiftshader.patch/
https://sources.debian.org/patches/chromium/111.0.5563.110-1/disable/swiftshader.patch/
https://fidoalliance.org/apple-google-and-microsoft-commit-to-expanded-support-for-fido-standard-to-accelerate-availability-of-passwordless-sign-ins/
https://fidoalliance.org/apple-google-and-microsoft-commit-to-expanded-support-for-fido-standard-to-accelerate-availability-of-passwordless-sign-ins/
https://fidoalliance.org/apple-google-and-microsoft-commit-to-expanded-support-for-fido-standard-to-accelerate-availability-of-passwordless-sign-ins/
https://fidoalliance.org/cloudflare-embraces-fido-to-help-its-own-security/
https://arstechnica.com/information-technology/2023/05/passwordless-google-accounts-are-easier-and-more-secure-than-passwords-heres-why/
https://arstechnica.com/information-technology/2023/05/passwordless-google-accounts-are-easier-and-more-secure-than-passwords-heres-why/
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://developer.chrome.com/docs/crux/
https://developer.chrome.com/docs/crux/
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63b
https://github.com/google/google-authenticator-libpam
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://doi.org/10.1109/SP46215.2023.00056
https://www.yubico.com/blog/passkeys-and-the-future-of-modern-authentication/
https://www.yubico.com/blog/passkeys-and-the-future-of-modern-authentication/
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform

[87] Allan Heydon and Marc Najork. “Mercator: A Scalable, Extensible Web Crawler”. In: World Wide
Web 2.4 (Dec. 1999), pp. 219–229. doi: 10.1023/A:1019213109274.

[88] Adam Holmberg et al. DataStax Python Driver for Apache Cassandra. Version 3.28.0. DataStax
Inc., June 5, 2023. url: https://github.com/datastax/python-driver (visited on June 13,
2023).

[89] Hang Hu et al. “Assessing Browser-level Defense against IDN-based Phishing”. In: Proceedings of
the 30th USENIX Security Symposium. USENIX Association, Aug. 2021. isbn: 978-1-939133-24-3.

[90] Troy Hunt. I’ve Just Launched ”Pwned Passwords” V2 With Half a Billion Passwords for Down-
load. Feb. 22, 2018. url: https://www.troyhunt.com/ive-just-launched-pwned-passwords-
version-2/ (visited on Jan. 8, 2023).

[91] Troy Hunt. Open Source Pwned Passwords with FBI Feed and 225M New NCA Passwords Is Now
Live! Dec. 20, 2021. url: https://www.troyhunt.com/open-source-pwned-passwords-with-
fbi-feed-and-225m-new-nca-passwords-is-now-live/ (visited on May 17, 2023).

[92] IANA. CBOR Object Signing and Encryption (COSE) Algorithm Registry. Jan. 11, 2017. url:
https://www.iana.org/assignments/cose/cose.xhtml (visited on Mar. 12, 2023).

[93] Jamie Indigo and Dave Smart. The 2022 Web Almanac: Page Weight. HTTP Archive, Sept. 26,
2022. url: https://almanac.httparchive.org/en/2022/page-weight (visited on Feb. 28, 2023).

[94] Internet Archive. Digital Library of Free & Borrowable Books, Movies, Music & Wayback Machine.
url: https://archive.org/ (visited on May 30, 2023).

[95] Internet Crime Complaint Center (IC3). Internet Crime Report. Federal Bureau of Investigation
(FBI), 2022, p. 21. url: https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf
(visited on May 24, 2023).

[96] Internet Systems Consortium, Inc. BIND 9. url: https://www.isc.org/bind/ (visited on
June 17, 2023).

[97] Vincenzo Iozzo. The Good, the Bad and the Ugly of Apple Passkeys. SlashID Blog. Sept. 23, 2022.
url: https://www.slashid.dev/blog/passkeys-deepdive/ (visited on May 15, 2023).

[98] Vasu Jakkal. This World Password Day Consider Ditching Passwords Altogether. Microsoft Se-
curity Blog. May 5, 2022. url: https://www.microsoft.com/en-us/security/blog/2022/05/
05/this-world-password-day-consider-ditching-passwords-altogether/ (visited on Jan. 3,
2023).

[99] J. C. Jones and Tim Taubert. Using Hardware Token-based 2FA with the WebAuthn API. Mozilla
Hacks – The Web Developer Blog. Jan. 16, 2018. url: https://hacks.mozilla.org/2018/01/
using-hardware-token-based-2fa-with-the-webauthn-api (visited on Jan. 16, 2023).

[100] Michael Jones et al. Web Authentication: An API for Accessing Public Key Credentials. Recom-
mendation Level 1. W3C, Mar. 2019.

[101] Michael B. Jones, Akshay Kumar, and Emil Lundberg. Web Authentication: An API for Accessing
Public Key Credentials. Editor’s Draft Level 3. W3C, May 17, 2023.

[102] Brewster Kahle. Let Us Serve You, but Don’t Bring Us down. Internet Archive Blogs. May 29, 2023.
url: https://blog.archive.org/2023/05/29/let-us-serve-you-but-dont-bring-us-down/
(visited on May 30, 2023).

[103] David Kargerl et al. “Consistent Hashing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web”. In: Proceedings of the 29th Annual ACM Symposium
on Theory of Computing. El Paso, TX, USA: ACM Press, 1997, pp. 654–663.

[104] Markus Keil, Philipp Markert, and Markus Dürmuth. “‘It’s Just a Lot of Prerequisites’: A User
Perception and Usability Analysis of the German ID Card as a FIDO2 Authenticator”. In: Eu-
roUSEC ’22: Proceedings of the 2022 European Symposium on Usable Security. Karlsruhe, Ger-
many: ACM, Sept. 29, 2022, pp. 172–188. doi: 10.1145/3549015.3554208.

[105] Anas Khan. Soup. Version v1.2.5. Jan. 16, 2022. url: https://github.com/anaskhan96/soup
(visited on June 13, 2023).

[106] Eiji Kitamura. Passwordless Sign-in on Forms with WebAuthn Passkey Autofill. Chrome Devel-
opers. Nov. 30, 2022. url: https://developer.chrome.com/blog/webauthn-conditional-ui/
(visited on Jan. 12, 2023).

[107] Michael Klishin et al. RabbitMQ Server. Version 3.11.15. VMware Inc., Apr. 29, 2023. url: https:
//github.com/rabbitmq/rabbitmq-server (visited on May 2, 2023).

106

https://doi.org/10.1023/A:1019213109274
https://github.com/datastax/python-driver
https://www.troyhunt.com/ive-just-launched-pwned-passwords-version-2/
https://www.troyhunt.com/ive-just-launched-pwned-passwords-version-2/
https://www.troyhunt.com/open-source-pwned-passwords-with-fbi-feed-and-225m-new-nca-passwords-is-now-live/
https://www.troyhunt.com/open-source-pwned-passwords-with-fbi-feed-and-225m-new-nca-passwords-is-now-live/
https://www.iana.org/assignments/cose/cose.xhtml
https://almanac.httparchive.org/en/2022/page-weight
https://archive.org/
https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf
https://www.isc.org/bind/
https://www.slashid.dev/blog/passkeys-deepdive/
https://www.microsoft.com/en-us/security/blog/2022/05/05/this-world-password-day-consider-ditching-passwords-altogether/
https://www.microsoft.com/en-us/security/blog/2022/05/05/this-world-password-day-consider-ditching-passwords-altogether/
https://hacks.mozilla.org/2018/01/using-hardware-token-based-2fa-with-the-webauthn-api
https://hacks.mozilla.org/2018/01/using-hardware-token-based-2fa-with-the-webauthn-api
https://blog.archive.org/2023/05/29/let-us-serve-you-but-dont-bring-us-down/
https://doi.org/10.1145/3549015.3554208
https://github.com/anaskhan96/soup
https://developer.chrome.com/blog/webauthn-conditional-ui/
https://github.com/rabbitmq/rabbitmq-server
https://github.com/rabbitmq/rabbitmq-server

[108] Thorin Klosowski. “RIP, Passwords. Here’s What’s Coming Next.” In: Wirecutter by The New
York Times (Jan. 11, 2023). url: https://www.nytimes.com/wirecutter/blog/what-are-
passkeys-and-how-they-can-replace-passwords/ (visited on May 15, 2023).

[109] Tobias Koppers et al. Webpack. Version 5.88.0. webpack, June 21, 2023. url: https://github.
com/webpack/webpack (visited on June 26, 2023).

[110] Mikhail Korobov et al. Splash. Version 3.5.0. June 16, 2020. url: https://github.com/scrapin
ghub/splash (visited on June 1, 2023).

[111] Martijn Koster et al. Robots Exclusion Protocol. Request for Comments 9309. RFC Editor, Sept.
2022.

[112] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Message Authenti-
cation. Request for Comments 2104. RFC Editor, Feb. 1997.

[113] Brian Krebs. “Your Phone May Soon Replace Many of Your Passwords”. In: Krebs on Security
(May 9, 2022). url: https://krebsonsecurity.com/2022/05/your-phone-may-soon-replace-
many-of-your-passwords/ (visited on May 15, 2023).

[114] Adam Langley. Passkeys. ImperialViolet. Sept. 22, 2022. url: https://www.imperialviolet.
org/2022/09/22/passkeys.html (visited on May 15, 2023).

[115] Leona Lassak et al. “It’s Stored, Hopefully, on an Encrypted Server: Mitigating Users’ Misconcep-
tions About FIDO2 Biometric WebAuthn”. In: Proceedings of the 30th USENIX Security Sympo-
sium. Aug. 2021, pp. 91–108. isbn: 978-1-939133-24-3.

[116] Victor Le Pochat et al. Tranco. url: https://tranco-list.eu/ (visited on June 9, 2023).
[117] Victor Le Pochat et al. “Tranco: A Research-Oriented Top Sites Ranking Hardened Against Ma-

nipulation”. In: Network and Distributed System Security Symposium. San Diego, CA, USA:
Internet Society, 2019. doi: 10.14722/ndss.2019.23386.

[118] Noah Levitt et al. Heritrix. Version 3.4.0. Internet Archive, July 27, 2022. url: https://github.
com/internetarchive/heritrix3 (visited on Feb. 17, 2023).

[119] Boon Thau Loo, Owen Cooper, and Sailesh Krishnamurthy. Distributed Web Crawling over DHTs.
University of California, Berkeley Department of Electrical Engineering and Computer Sciences
Technical Report CSD-04-130. Feb. 2004.

[120] Abraão Lourenço. Supporting Passkeys in Shop’s Authentication Flows. Shopify Engineering.
Mar. 24, 2023. url: https://shopify.engineering/supporting- passkeys- in- shop- authe
ntication-flows (visited on May 15, 2023).

[121] Emil Lundberg. Yubico Proposes WebAuthn Protocol Extension to Simplify Backup Security Keys.
Yubico. Nov. 16, 2020. url: https://www.yubico.com/blog/yubico- proposes- webauthn-
protocol-extension-to-simplify-backup-security-keys/ (visited on Jan. 20, 2023).

[122] Andrey Lushnikov et al. Puppeteer. Version 20.6.0. June 9, 2023. url: https://github.com/
puppeteer/puppeteer (visited on June 9, 2023).

[123] Nathan Lutchansky. TAYGA - NAT64 for Linux. Version 0.9.2. June 10, 2011. url: http://www.
litech.org/tayga/ (visited on June 17, 2023).

[124] Sanam Ghorbani Lyastani et al. “Is FIDO2 the Kingslayer of User Authentication? A Comparative
Usability Study of FIDO2 Passwordless Authentication”. In: 2020 IEEE Symposium on Security
and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society, May 2020, pp. 842–859. doi:
10.1109/SP40000.2020.00047.

[125] David M’Raihi et al. HOTP: An HMAC-Based One-Time Password Algorithm. Request for Com-
ments 4226. RFC Editor, Dec. 2005.

[126] David M’Raihi et al. TOTP: Time-Based One-Time Password Algorithm. Request for Comments
6238. RFC Editor, May 2011.

[127] Majestic-12 Ltd. Majestic Million. url: https://majestic.com/reports/majestic-million
(visited on Feb. 23, 2023).

[128] Jim Manico et al. Multifactor Authentication Cheat Sheet. url: https://cheatsheetseries.
owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html (visited on May 18,
2023).

[129] Daniel Martí et al. Chromedp. Version 0.9.1. Apr. 15, 2023. url: https://github.com/chromedp/
chromedp (visited on June 13, 2023).

107

https://www.nytimes.com/wirecutter/blog/what-are-passkeys-and-how-they-can-replace-passwords/
https://www.nytimes.com/wirecutter/blog/what-are-passkeys-and-how-they-can-replace-passwords/
https://github.com/webpack/webpack
https://github.com/webpack/webpack
https://github.com/scrapinghub/splash
https://github.com/scrapinghub/splash
https://krebsonsecurity.com/2022/05/your-phone-may-soon-replace-many-of-your-passwords/
https://krebsonsecurity.com/2022/05/your-phone-may-soon-replace-many-of-your-passwords/
https://www.imperialviolet.org/2022/09/22/passkeys.html
https://www.imperialviolet.org/2022/09/22/passkeys.html
https://tranco-list.eu/
https://doi.org/10.14722/ndss.2019.23386
https://github.com/internetarchive/heritrix3
https://github.com/internetarchive/heritrix3
https://shopify.engineering/supporting-passkeys-in-shop-authentication-flows
https://shopify.engineering/supporting-passkeys-in-shop-authentication-flows
https://www.yubico.com/blog/yubico-proposes-webauthn-protocol-extension-to-simplify-backup-security-keys/
https://www.yubico.com/blog/yubico-proposes-webauthn-protocol-extension-to-simplify-backup-security-keys/
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
http://www.litech.org/tayga/
http://www.litech.org/tayga/
https://doi.org/10.1109/SP40000.2020.00047
https://majestic.com/reports/majestic-million
https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html
https://github.com/chromedp/chromedp
https://github.com/chromedp/chromedp

[130] Celso Martinho and Sabina Zejnilovic. Goodbye, Alexa. Hello, Cloudflare Radar Domain Rankings.
The Cloudflare Blog. Sept. 30, 2022. url: http : / / blog . cloudflare . com / radar - domain -
rankings/ (visited on May 15, 2023).

[131] MDN Contributors. PublicKeyCredential: isConditionalMediationAvailable() Static Method. MDN
Web Docs. June 12, 2023. url: https://developer.mozilla.org/en- US/docs/Web/API/
PublicKeyCredential/isConditionalMediationAvailable (visited on June 13, 2023).

[132] Jens Oliver Meiert. The 2022 Web Almanac: Markup. 3. HTTP Archive, Sept. 26, 2022.
[133] Nick Mooney, Nick Steele, and Jeremy Erickson. Network Transport Summary. Duo Security,

May 4, 2020.
[134] Neal Mueller. Credential Stuffing. In collab. with Jmanico et al. OWASP Foundation. url: https:

//owasp.org/www-community/attacks/Credential_stuffing (visited on May 17, 2023).
[135] Sebastian Nagel et al. Apache Nutch. Version 1.19. The Apache Software Foundation, Aug. 22,

2022. url: https://github.com/apache/nutch (visited on Feb. 17, 2023).
[136] Marc Najork. “Web Crawler Architecture”. In: Encyclopedia of Database Systems. Ed. by Ling Liu

and M. Tamer Özsu. New York City, NY, USA: Springer, 2017. doi: 10.1007/978-1-4899-7993-
3_457-3.

[137] Marc Najork and Allan Heydon. “High-Performance Web Crawling”. In: Handbook of Massive
Data Sets. Ed. by James Abello, Panos M. Pardalos, and Mauricio G. C. Resende. Vol. 4. Boston,
MA, USA: Springer, 2002, pp. 25–45. doi: 10.1007/978-1-4615-0005-6_2.

[138] Dain Nilsson. Yubico’s Take on U2F Key Wrapping. Yubico. Nov. 14, 2014. url: https://www.
yubico.com/blog/yubicos-u2f-key-wrapping/ (visited on May 23, 2023).

[139] Karsten Nohl and Chris Paget. “GSM: SRSLY?” 26th Chaos Communication Congress (Berlin).
Jan. 9, 2010. url: https://fahrplan.events.ccc.de/congress/2009/Fahrplan/events/3654.
en.html (visited on Jan. 24, 2023).

[140] Torkel Ödegaard et al. Grafana. Version 9.5.3. Grafana Labs, June 6, 2023. url: https://github.
com/grafana/grafana (visited on June 17, 2023).

[141] Okta, Inc. Set up Okta Verify on iOS Devices. Okta Help Center. May 1, 2023. url: https:
//help.okta.com/eu/en-us/Content/Topics/end-user/ov-setup-ios.htm (visited on May 25,
2023).

[142] Christopher Olston and Marc Najork. “Web Crawling”. In: Foundations and Trends® in Informa-
tion Retrieval 4.3 (2010), pp. 175–246. doi: 10.1561/1500000017.

[143] OWASP Foundation. Credential Stuffing Prevention. OWASP Cheat Sheet Series. url: https:
//cheatsheetseries.owasp.org/cheatsheets/Credential_Stuffing_Prevention_Cheat_
Sheet.html (visited on May 17, 2023).

[144] Addison Phillips and Mark Davis. Tags for Identifying Languages. Request for Comments 5646.
RFC Editor, Sept. 2009.

[145] David Pierce. “Dashlane Is Ready to Replace All Your Passwords with Passkeys”. In: The Verge
(Aug. 31, 2022). url: https://www.theverge.com/2022/8/31/23329373/dashlane-passkeys-
password-manager (visited on May 25, 2023).

[146] Brian Pinkerton. “WebCrawler: Finding What People Want”. PhD thesis. Seattle, Washingtion,
USA: University of Washington, 2000.

[147] Ansuman Prusty et al. “Horizontally Scalable Web Crawler Using Containerization and a Graph-
ical User Interface”. In: International Journal of Engineering Research and 09.05 (May 15, 2020).
doi: 10.17577/IJERTV9IS050268.

[148] Q-Success DI Gelbmann GmbH. Historical Yearly Trends in the Usage Statistics of Javascript
Libraries for Websites. Web Technology Surveys (W3Techs). June 2023. url: https://w3techs.
com/technologies/history_overview/javascript_library/all/y (visited on June 1, 2023).

[149] Do Le Quoc et al. “UniCrawl: A Practical Geographically Distributed Web Crawler”. In: 8th
International Conference on Cloud Computing (CLOUD). New York City, NY, USA: IEEE, June
2015, pp. 389–396. doi: 10.1109/CLOUD.2015.59.

[150] Björn Rabenstein et al. Prometheus Go Client Library. Version 1.15.0. The Linux Foundation,
Apr. 13, 2023. url: https://github.com/prometheus/client_golang (visited on June 17, 2023).

[151] Suby Raman. Guide to Web Authentication. Duo Security. url: https://webauthn.guide (visited
on May 23, 2023).

108

http://blog.cloudflare.com/radar-domain-rankings/
http://blog.cloudflare.com/radar-domain-rankings/
https://developer.mozilla.org/en-US/docs/Web/API/PublicKeyCredential/isConditionalMediationAvailable
https://developer.mozilla.org/en-US/docs/Web/API/PublicKeyCredential/isConditionalMediationAvailable
https://owasp.org/www-community/attacks/Credential_stuffing
https://owasp.org/www-community/attacks/Credential_stuffing
https://github.com/apache/nutch
https://doi.org/10.1007/978-1-4899-7993-3_457-3
https://doi.org/10.1007/978-1-4899-7993-3_457-3
https://doi.org/10.1007/978-1-4615-0005-6_2
https://www.yubico.com/blog/yubicos-u2f-key-wrapping/
https://www.yubico.com/blog/yubicos-u2f-key-wrapping/
https://fahrplan.events.ccc.de/congress/2009/Fahrplan/events/3654.en.html
https://fahrplan.events.ccc.de/congress/2009/Fahrplan/events/3654.en.html
https://github.com/grafana/grafana
https://github.com/grafana/grafana
https://help.okta.com/eu/en-us/Content/Topics/end-user/ov-setup-ios.htm
https://help.okta.com/eu/en-us/Content/Topics/end-user/ov-setup-ios.htm
https://doi.org/10.1561/1500000017
https://cheatsheetseries.owasp.org/cheatsheets/Credential_Stuffing_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Credential_Stuffing_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Credential_Stuffing_Prevention_Cheat_Sheet.html
https://www.theverge.com/2022/8/31/23329373/dashlane-passkeys-password-manager
https://www.theverge.com/2022/8/31/23329373/dashlane-passkeys-password-manager
https://doi.org/10.17577/IJERTV9IS050268
https://w3techs.com/technologies/history_overview/javascript_library/all/y
https://w3techs.com/technologies/history_overview/javascript_library/all/y
https://doi.org/10.1109/CLOUD.2015.59
https://github.com/prometheus/client_golang
https://webauthn.guide

[152] Rishu Ranjan. Password Spraying Attack. OWASP Foundation. url: https://owasp.org/www-
community/attacks/Password_Spraying_Attack (visited on May 17, 2023).

[153] Fabian Reinartz et al. Prometheus. Version 2.44.0. The Linux Foundation, May 13, 2023. url:
https://github.com/prometheus/prometheus (visited on June 17, 2023).

[154] Charles Reis, Alexander Moshchuk, and Nasko Oskov. “Site Isolation: Process Separation for Web
Sites within the Browser”. In: Proceedings of the 28th USENIX Security Symposium. Santa Clara,
CA, USA, Aug. 2019. isbn: 978-1-939133-06-9.

[155] Charlie Reis. Multi-Process Architecture. Chromium Blog. Sept. 11, 2008. url: https://blog.
chromium.org/2008/09/multi-process-architecture.html (visited on June 15, 2023).

[156] Leonard Richardson. Beautifulsoup4. Version 4.12.2. Apr. 7, 2023. url: https://www.crummy.
com/software/BeautifulSoup/bs4/ (visited on June 13, 2023).

[157] River Bank Computing Ltd. PyQt5: Python Bindings for the Qt Cross Platform Application
Toolkit. Version 5.14.0. Dec. 19, 2020. url: https://www.riverbankcomputing.com/software/
pyqt/ (visited on June 1, 2023).

[158] Eric Rubin. How We Boosted WebAuthn Adoption from 20 Percent to 93 Percent in Two Days.
GitLab. Nov. 9, 2022. url: https://about.gitlab.com/blog/2022/11/09/how-we-boosted-
webauthn-adoption-from-20-percent-to-93-percent-in-2-days/ (visited on May 15, 2023).

[159] Trevor Russo. SIMulated Trust: How Malicious Actors Take Advantage of Cellular Carriersto
Perform SIM Swapping Attacks. Boston, MA, USA: Tufts University, Dec. 13, 2019. url: https:
//www.cs.tufts.edu/comp/116/archive/fall2019/trusso.pdf (visited on Feb. 15, 2023).

[160] Kimberly Ruth et al. “Toppling Top Lists: Evaluating the Accuracy of Popular Website Lists”.
In: Proceedings of the 22nd ACM Internet Measurement Conference. Nice, France: ACM, Oct. 25,
2022, pp. 374–387. doi: 10.1145/3517745.3561444.

[161] Pierangela Samarati and Latanya Sweeney. “Protecting Privacy When Disclosing Information: K-
Anonymity and Its Enforcement through Generalization and Suppression”. In: Proceedings of the
IEEE Symposium on Research in Security and Privacy (S&P). Oakland, CA, USA: IEEE, May
1998.

[162] Salvatore Sanfilippo et al. Redis. Version 7.0.11. Apr. 17, 2023. url: https://github.com/redis/
redis (visited on June 1, 2023).

[163] Evan Sangeline. It Is *not* Possible to Detect and Block Chrome Headless. Intoli Blog. Jan. 18,
2018. url: https://intoli.com/blog/not-possible-to-block-chrome-headless/ (visited on
Apr. 11, 2023).

[164] Evan Sangeline. Making Chrome Headless Undetectable. Intoli Blog. Aug. 9, 2017. url: https:
//intoli.com/blog/making-chrome-headless-undetectable/ (visited on Apr. 11, 2023).

[165] SAP. What Is Gigya. url: https://www.sap.com/products/acquired- brands/what- is-
gigya.html (visited on June 23, 2023).

[166] Nina Satragno and Jeff Hodges. Explainer: WebAuthn Conditional UI. W3C WebAuthn Wiki.
Oct. 5, 2022. url: https://github.com/w3c/webauthn (visited on Dec. 5, 2022).

[167] Jim Schaad. CBOR Object Signing and Encryption (COSE). Request for Comments 8152. RFC
Editor, July 2017.

[168] Peter Schartner and Stefan Burger. Attacking mTAN-Applications like e-Banking and Mobile
Signatures. Technical Report TR-syssec-11-01. University of Klagenfurt, Dec. 2011.

[169] Uri Schonfeld and Narayanan Shivakumar. “Sitemaps: Above and beyond the Crawl of Duty”.
In: Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain: ACM,
Apr. 20, 2009, pp. 991–1000. doi: 10.1145/1526709.1526842.

[170] Fabian Schwarz, Khue Do, and Gunnar Heide. “FeIDo: Recoverable FIDO2 Tokens Using Elec-
tronic IDs”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security. Los Angeles, CA, USA: ACM, Nov. 2022, pp. 2581–2594. doi: 10.1145/3548606.
3560584.

[171] Claude E. Shannon. “A Mathematical Theory of Communication”. In: The Bell System Technical
Journal 27.4 (1948), pp. 623–656.

[172] Hossein Siadati et al. “Mind Your SMSes: Mitigating Social Engineering in Second Factor Au-
thentication”. In: Computers & Security 65 (Mar. 2017), pp. 14–28. doi: 10.1016/j.cose.2016.
09.009.

109

https://owasp.org/www-community/attacks/Password_Spraying_Attack
https://owasp.org/www-community/attacks/Password_Spraying_Attack
https://github.com/prometheus/prometheus
https://blog.chromium.org/2008/09/multi-process-architecture.html
https://blog.chromium.org/2008/09/multi-process-architecture.html
https://www.crummy.com/software/BeautifulSoup/bs4/
https://www.crummy.com/software/BeautifulSoup/bs4/
https://www.riverbankcomputing.com/software/pyqt/
https://www.riverbankcomputing.com/software/pyqt/
https://about.gitlab.com/blog/2022/11/09/how-we-boosted-webauthn-adoption-from-20-percent-to-93-percent-in-2-days/
https://about.gitlab.com/blog/2022/11/09/how-we-boosted-webauthn-adoption-from-20-percent-to-93-percent-in-2-days/
https://www.cs.tufts.edu/comp/116/archive/fall2019/trusso.pdf
https://www.cs.tufts.edu/comp/116/archive/fall2019/trusso.pdf
https://doi.org/10.1145/3517745.3561444
https://github.com/redis/redis
https://github.com/redis/redis
https://intoli.com/blog/not-possible-to-block-chrome-headless/
https://intoli.com/blog/making-chrome-headless-undetectable/
https://intoli.com/blog/making-chrome-headless-undetectable/
https://www.sap.com/products/acquired-brands/what-is-gigya.html
https://www.sap.com/products/acquired-brands/what-is-gigya.html
https://github.com/w3c/webauthn
https://doi.org/10.1145/1526709.1526842
https://doi.org/10.1145/3548606.3560584
https://doi.org/10.1145/3548606.3560584
https://doi.org/10.1016/j.cose.2016.09.009
https://doi.org/10.1016/j.cose.2016.09.009

[173] Software Freedom Conservancy. Selenium. url: https://www.selenium.dev/ (visited on June 1,
2023).

[174] Lance Spitzner. Time for Password Expiration to Die. SANS Cyber Security Blog. June 27, 2019.
url: https://www.sans.org/blog/time- for- password- expiration- to- die/ (visited on
May 22, 2023).

[175] Tristan Tarrant et al. Infinispan, In-Memory Distributed Data Store. Version 14.0.6. Red Hat,
Jan. 19, 2023. url: https://github.com/infinispan/infinispan (visited on Feb. 17, 2023).

[176] Kyle Taylor and Laura Silver. Smartphone Ownership Is Growing Rapidly Around the World, but
Not Always Equally. Pew Research Center, Feb. 5, 2019. url: https://www.pewresearch.org/
global/wp-content/uploads/sites/2/2019/02/Pew-Research-Center_Global-Technology-
Use-2018_2019-02-05.pdf (visited on Apr. 24, 2023).

[177] The Apache Software Foundation. Frequently Asked Questions. Apache Cassandra Documentation.
url: https://cassandra.apache.org/doc/4.0/cassandra/faq/#can-large-blob (visited on
Apr. 20, 2023).

[178] The Open Group. “General Concepts”. In: Base Specifications. Issue 7. IEEE, 2018. url: https:
//pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html (visited on July 6,
2020).

[179] Anna Tims. “’Sim Swap’ Gives Fraudsters Access-All-Areas via Your Mobile Phone”. In: The
Guardian (Sept. 26, 2015). url: https://www.theguardian.com/money/2015/sep/26/sim-swap-
fraud-mobile-phone-vodafone-customer (visited on May 18, 2023).

[180] Mindy Tran, Sabrina Amft, and Dominik Wermke. “Poster: User Awareness of Phishing and
WebAuthn”. In: 43rd IEEE Symposium on Security and Privacy, IEEE S&P 2022. San Francisco,
CA, USA, May 2022. url: https://www.ieee-security.org/TC/SP2022/downloads/SP22-
posters/sp22-posters-53.pdf.

[181] Sean Treadway et al. Amqp091-Go. Version 1.8.1. RabbitMQ, May 4, 2023. url: https://github.
com/rabbitmq/amqp091-go (visited on June 13, 2023).

[182] Uber Technologies Inc. Security Update. Uber Newsroom. Sept. 16, 2022. url: https://www.
uber.com/newsroom/security-update (visited on May 25, 2023).

[183] Enis Ulqinaku et al. “Is Real-time Phishing Eliminated with FIDO?” In: Proceedings of the
30th USENIX Security Symposium. USENIX Association, Aug. 2021, pp. 3811–3828. isbn: 978-1-
939133-24-3.

[184] unix-ninja. Attacking Google Authenticator. Oct. 22, 2018. url: https://www.unix-ninja.com/
p/attacking_google_authenticator (visited on May 19, 2023).

[185] Sander Vinberg and Jarrod Overson. Credential Stuffing Report. F5 Labs, Feb. 9, 2021. url:
https://www.f5.com/labs/articles/threat- intelligence/2021- credential- stuffing-
report (visited on May 17, 2023).

[186] VMware Inc. Networking and RabbitMQ. RabbitMQ Documentation. Jan. 2, 2023. url: https:
//www.rabbitmq.com/networking.html (visited on Apr. 12, 2023).

[187] Jeremy Wagner and Barry Pollard. Time to First Byte (TTFB). web.dev. Jan. 19, 2023. url:
https://web.dev/ttfb/ (visited on June 6, 2023).

[188] Michael Webster. How Passkeys Reduce Friction in the Ecommerce Shopping Experience. Shopify.
Feb. 9, 2023. url: https://www.shopify.com/blog/ecommerce- payment- authentication
(visited on May 15, 2023).

[189] Alex Weinert. Your Pa$$word Doesn’t Matter. Azure Active Directory Identity Blog. July 9, 2019.
url: https://techcommunity.microsoft.com/t5/azure-active-directory-identity/your-
pa-word-doesn-t-matter/ba-p/731984 (visited on May 23, 2023).

[190] Steve Won. Goodbye, Passwords. 1Password Blog. Feb. 9, 2023. url: https://blog.1password.
com/unlock-1password-with-passkeys/ (visited on May 18, 2023).

[191] Yahoo Japan. Yahoo! JAPAN Is No Longer Available in the EEA and the United Kingdom. Apr. 6,
2022. url: https://www.yahoo.co.jp/ (visited on June 23, 2023).

[192] YouGov PLC. Passwords. Online Survey. Oct. 2018. url: https://d25d2506sfb94s.cloudfront.
net/cumulus_uploads/document/81iu1qrr2x/Passwords%20results,%20Sept.%202017%20%E2%
80%93%20Oct.%202018.pdf (visited on May 19, 2023).

110

https://www.selenium.dev/
https://www.sans.org/blog/time-for-password-expiration-to-die/
https://github.com/infinispan/infinispan
https://www.pewresearch.org/global/wp-content/uploads/sites/2/2019/02/Pew-Research-Center_Global-Technology-Use-2018_2019-02-05.pdf
https://www.pewresearch.org/global/wp-content/uploads/sites/2/2019/02/Pew-Research-Center_Global-Technology-Use-2018_2019-02-05.pdf
https://www.pewresearch.org/global/wp-content/uploads/sites/2/2019/02/Pew-Research-Center_Global-Technology-Use-2018_2019-02-05.pdf
https://cassandra.apache.org/doc/4.0/cassandra/faq/#can-large-blob
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html
https://www.theguardian.com/money/2015/sep/26/sim-swap-fraud-mobile-phone-vodafone-customer
https://www.theguardian.com/money/2015/sep/26/sim-swap-fraud-mobile-phone-vodafone-customer
https://www.ieee-security.org/TC/SP2022/downloads/SP22-posters/sp22-posters-53.pdf
https://www.ieee-security.org/TC/SP2022/downloads/SP22-posters/sp22-posters-53.pdf
https://github.com/rabbitmq/amqp091-go
https://github.com/rabbitmq/amqp091-go
https://www.uber.com/newsroom/security-update
https://www.uber.com/newsroom/security-update
https://www.unix-ninja.com/p/attacking_google_authenticator
https://www.unix-ninja.com/p/attacking_google_authenticator
https://www.f5.com/labs/articles/threat-intelligence/2021-credential-stuffing-report
https://www.f5.com/labs/articles/threat-intelligence/2021-credential-stuffing-report
https://www.rabbitmq.com/networking.html
https://www.rabbitmq.com/networking.html
https://web.dev/ttfb/
https://www.shopify.com/blog/ecommerce-payment-authentication
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/your-pa-word-doesn-t-matter/ba-p/731984
https://techcommunity.microsoft.com/t5/azure-active-directory-identity/your-pa-word-doesn-t-matter/ba-p/731984
https://blog.1password.com/unlock-1password-with-passkeys/
https://blog.1password.com/unlock-1password-with-passkeys/
https://www.yahoo.co.jp/
https://d25d2506sfb94s.cloudfront.net/cumulus_uploads/document/81iu1qrr2x/Passwords%20results,%20Sept.%202017%20%E2%80%93%20Oct.%202018.pdf
https://d25d2506sfb94s.cloudfront.net/cumulus_uploads/document/81iu1qrr2x/Passwords%20results,%20Sept.%202017%20%E2%80%93%20Oct.%202018.pdf
https://d25d2506sfb94s.cloudfront.net/cumulus_uploads/document/81iu1qrr2x/Passwords%20results,%20Sept.%202017%20%E2%80%93%20Oct.%202018.pdf

[193] Diego Zavala et al. Bringing Passkeys to Android & Chrome. Android Developers Blog. Oct. 12,
2022. url: https://android-developers.googleblog.com/2022/10/bringing-passkeys-to-
android-and-chrome.html (visited on Jan. 3, 2023).

111

https://android-developers.googleblog.com/2022/10/bringing-passkeys-to-android-and-chrome.html
https://android-developers.googleblog.com/2022/10/bringing-passkeys-to-android-and-chrome.html

A. Appendix

Listing 13: Regular Expressions for Authentication URL Matching
1 log-?in(\W|$)
2 auth(enticate)?(\W|$)
3 register(\W|$)
4 registration(\W|$)
5 account(\W|$)
6 sign-?(in|up)(\W|$)
7 admin(\W|$)

113

	Lists
	List of Abbreviations
	List of Tables
	List of Figures
	List of Listings

	Introduction
	Related Work
	Means of Authentication
	Password-Based Authentication and Its Risks
	Multi-Factor Authentication
	FIDO2 and WebAuthn Essentials
	Obstacles of FIDO2 Adoption
	Towards Phishing-Resistance
	Multi-Device FIDO Credentials
	Conditional Mediation

	Distributed Web Crawlers
	Use Cases
	Fundamentals
	Politeness Policies
	Building for Scale
	Crawling the Dynamic Web

	Architecture
	Scope and Requirements
	Napkin Math

	Selecting System Components
	Queueing
	Data Storage
	Crawling

	Process Design
	Defining the Sequence of Operations
	Designing Data Structures
	Content Partitioning

	Implementation
	Target Selection
	Comparing Domain Lists
	Handling Errors
	Ignoring HTTP-only

	Choosing a Software Stack
	Programming Languages
	Suitable Libraries

	Detection Methods
	Authentication URL Detection
	Authentication Method Detection

	Preliminary Experiments
	Unit Testing with Real Web Content
	Sitemap Authentication URL Extraction
	Optimizing Chrome Crawling Performance

	Avoiding Crawler Detection

	Deployment
	Automated Deployment
	Monitoring
	Peculiarities of the Deployment Environment
	IPv6-Only Connectivity
	NAT64 Gateway
	Mesh Virtual Private Network

	Load Testing Components
	Cassandra
	RabbitMQ

	Infrastructure Optimizations
	Cassandra Optimizations
	Crawler Optimizations

	Results
	Infrastructural Analysis
	IPv6 Adoption Rate
	System Load

	Quantitative Analysis
	Successful Connection Rate
	Discovered Content Distribution
	Authentication Method Detection

	Quantitative Validation of Matches
	Validation Datasets
	Comparing Matching Rule Effectiveness

	Qualitative Analysis
	Undetected Sites
	Analyzing Matches

	Discussion
	Limitations
	Inherent Detection Weaknesses
	False Negatives vs. False Positives
	True Positives vs. True Negatives

	Overcoming Hurdles
	Infrastructure
	Browsers and their Complexity
	Message Broker Complexity
	The Wild West of the Web
	Database Limitations

	Unexpected Findings
	Extensive Link Collections
	Amazon Links
	Conditional Rendering Makes HTML Detection Rules Difficult
	Websites May Detect Failing Image Rendering

	Future Work
	Architectural and Infrastructural Improvements
	Improve Authentication URL Detection
	JavaScript Deobfuscation
	Improve JavaScript Source Detection for Static Crawler
	Deduplicate Regionalized And Redirecting Domains
	Detect Common Passkey Libraries
	JavaScript Usage Detection

	Conclusion
	References
	Appendix

