
Building a real-world logging infrastructure with
Logstash, Elasticsearch and Kibana

Patrick Kleindienst
Stuttgart Media University/Bertsch Innovation GmbH

pk070@hdm-stuttgart.de

Abstract

Talking about highly scalable and reliable sys-
tems, issues like logging and monitoring are often
disregarded. However, being able to manage to-
day’s software systems absolutely requires deep
knowledge about the current state of applications
as well as the underlying infrastructure. Extract-
ing and preparing debug information as well as
various metrics in a fast and clearly arranged
manner is an essential precondition in order to
handle this task.

Since we at Bertsch Innovation GmbH also
face increasing requirements concerning Media-
Cockpit as one of our core products, we decided
to establish a centralized logging infrastructure
in order to come up to the application’s evolution
towards a more and more distributed system.

In this paper, I want to describe the steps
that I have taken in order to setup a functioning
logging tool stack consisting of Elasticsearch [16],
Logstash [29] and Kibana [27] (usually abbre-
viated as ELK stack). Besides outlining proper
setup and configuration, I will also discuss possi-
ble pitfalls as well as custom adjustments made
when ELK did not meet our demands.

1 Introduction

1.1 Why ELK?

Searching for available solutions which meet our
requirements, we finally decided to give ELK a
try. ELK by Elastic [11] turned out to be a well-
documented and established option, representing
an integral platform that offers virtually every-
thing that it takes to collect (Logstash), admin-
ister (Elasticsearch) and visualize (Kibana) large
amounts of data in nearly real-time. Although
this may sound like a vendor lock-in, we rather
considered this an advantage, thinking that a
collection of homogeneous software components
saves us the need to install a bunch of poten-

tially incompatible tools or - even worse - end up
in painfully implementing an in-house solution
which has to be maintained by ourselves. More-
over, a large community has clustered around
Elasticsearch as well as its companions Logstash
and Kibana over the last years, representing a
good contact point in case of difficulties.

1.2 Goals

With these arguments in mind, we defined the
following goals we wanted to achieve using ELK:

• Setting up Elasticsearch, Logstash and
Kibana on a dedicated VM

• Configure Logstash to consume logging
messages from log4j [3]

• Extract the root cause of incoming stack
traces to speed up the identification of ex-
ception origins

• Automating the process of backing up Elas-
ticsearch contents and removing outdated
records

• Configure an alerting mechanism which
sends a notification (e.g. an email) if certain
anomalies (e.g. high exception rate, high
average response time etc.) are detected

1.3 Prerequisites

The following explanations assume Ubuntu 14.04
as OS with Java 8 installed, since the whole ELK
stack is implemented in Java and therefore re-
quires a JRE. Setting up such an environment is
beyond the scope of this paper and will not be
covered below.

1

2 Logstash

2.1 Overview and setup

Logstash is a real-time data collection engine
that is able to consume messages from many
different sources like HTTP, messaging queues
or several logging frameworks. Since the inputs
produced by these sources have their own in-
herent structure, Logstash performs the task of
normalizing them and bringing them in a con-
sistent form. As soon as a message arrives, it is
transformed into a JSON-like event, consisting
of key-value pairs. Subsequently, any incoming
event can be enriched with additional informa-
tion, e.g. a simple timestamp, and its contents
can also be modified. Once a message has been
received and processed, it gets dispatched to one
or more destinations. As for possible targets, a
wide range of data stores, e.g. MongoDB, Ama-
zon S3, Hadoop or of course Elasticsearch, are
supported [29].

Figure 1 descriptively outlines the typical
Logstash workflow.

Figure 1: Logstash processing pipeline [35]

Getting Logstash up and running under
Ubuntu is straightforward and can be done in
three steps:

$ wget −qO − https://packages.elastic.co/GPG− \
KEY−elasticsearch | sudo apt−key add −

$ echo ’deb http://packages.elastic.co/logstash/ \
2.2/debian stable main’ | \
sudo tee /etc/apt/sources.list.d/logstash−list

$ sudo apt−get update &&
sudo apt−get install logstash

Listing 1: Installing Logstash [33]

What we have to do is download the reposi-
toy’s public key, add the repository to our sources
and install Logstash as soon as we have refreshed

our package lists. Once the installation process
has finished, the Logstash service starts automat-
ically [33].

Please consider that, in contrast to what is
shown in Listing 1, our ELK stack is based on
Logstash 2.1. The installation instructions above
refer to the latest Logstash documentation and
therefore make use of the most recent 2.2 repos-
itory.

2.2 Consuming input messages

The running instance can now be configured
according to our needs. This requires the
definition of a configuration file inside the
/etc/logstash/conf.d directory. The following list-
ing illustrates such a file’s skeletal structure [1]:

input {
}

filter {
}

output {
}

Listing 2: Logstash configuration skeleton [35]

Every Logstash configuration is made up of
three fundamental parts, reflecting the overall
high-level principle of gathering (input), process-
ing (filter) and forwarding (output) data as de-
scribed in the previous section. A special feature
of Logstash is that it completely relies on a plu-
gin architecture for defining a message processing
pipeline. This enables users to develop and inte-
grate their own plugins. It is no accident that the
configuration is completely described in JSON.
This runs like a thread through the Elasticsearch
ecosystem, avoiding additional complexity and
promoting comprehension of what exactly is go-
ing on [35].

In our scenario, we want our Logstash in-
stance to receive and process application logs
generated by log4j. Fortunately, there is already
a corresponding input plugin available which gets
along with a minimal setup:

2

input {
log4j {

”port” => 4560
}
}

Listing 3: log4j input plugin [28]

Although the log4j plugin offers lots of con-
figuration options, Listing 3 shows everything we
need as a start. As a consequence, a TCP-based
server is launched at port 4560. For the rest of
the parameters, the plugin already provides a set
of default values which is generally convenient.
[28].

The next step is to make log4j pass its mes-
sages to the freshly established TCP end point.
In order to send logs over the network, log4j
makes use of a SocketAppender, which is able
to communicate via TCP. Listing 4 shows an ex-
cerpt of the log4j2.xml file, defining the Socke-
tAppender appropriate to our Logstash settings
[4].

<Appenders>
<Socket name=”socketAppender”

host=”{logstash−host}” port=”4560”>
<SerializedLayout />

</Socket>
</Appenders>

Listing 4: log4j SocketAppender configuration [4]

Even though the introduced settings worked
fine at first glance, for us they came with a great
drawback. Since we were focused on narrowing
down incoming stack traces to only the root cause
(i.e. the last appearance of Caused by) of a chain
of exceptions, log4j’s standard SocketAppender
highly complicated this task. The reason is that
having used this appender, we could only send
exceptions and their complete stack traces in
chunks instead of transmitting them in a single
message. Subsequently, Logstash created an ex-
tra event for every stack trace fragment it re-
ceived, therefore splitting up a logical units in
disjointed events.

This behavior was not acceptable and made it
very hard to retrace what went wrong on our sys-
tems, since the correlation of the individual ex-
ceptions got lost. Of course this is not just a issue
induced by log4j, since the underlying transport

protocols define limited package sizes (e.g. 8192
bytes for UDP datagrams) anyway [38].

To bypass this problem, we decided to switch
to GELF (Graylog Extended Log Format) [38]
as our log format. In short, GELF can be used
as a log4j appender that creates JSON messages
from application or server logs, applying a fixed
set of predefined fields. Though GELF also has
to go along with the limitations of the underly-
ing transport protocol, one main characteristic is
that messages exceeding the maximum package
size are labeled with a message ID as well as a se-
quence number and therefore can be correctly re-
assemlbed after reception, which is exactly what
we needed [38].

At this point, a in-depth view on GELF as
well as its configuration as an appender and
Logstash input is omitted, since there is not so
much difference to what has already been shown.
For further details consider [22] and [39].

2.3 Filtering logging messages

If Logstash’s capabilities were limited to only re-
ceive and forward messages, integrating it into a
logging infrastructure would not make so much
sense. Its real power appears when it comes to
alter the internal structure of incoming events,
which can mean adding, removing or changing
information. This can be done by using available
filter plugins in our confuguration file. It is im-
portant to know that Logstash does not delimit
the number of filters that shall be applied. How-
ever, consider that the filters are executed in de-
scending order, analogous to their arrangement
in the configuration file. During this process, the
input of a filter is defined by the output of the
preceding filter, if available [21].

Having GELF configured properly,
Logstash’s filter mechanism can now be applied
to extract the desired information about an ex-
ception’s root cause. The basic idea is to access a
stack trace included in a GELF message’s Stack-
Trace field (where GELF lodges it by default),
parse it and store the leached root cause in an
additional RootCause field that will be added to
the JSON message on the fly.

For parsing purposes, the Logstash ecosys-
tem offers the predefined grok filter plugin [24].
It takes a pattern as an argument and matches it
against the input it receives. Grok is built upon
regular expressions and can be regared as some

3

kind of wrapper around them. This way, the plu-
gin can supply ready-made expressions for com-
mon message structures like HTTP communica-
tions or certain server logs, preventing its users
from reinventing the wheel again and again. Nev-
ertheless, it is still possible to pass plain regular
expressions to Grok in case they are no prede-
fined patterns that suit a special use case [24].

Because grok is based on Oniguruma regex
library [42], it is essential to keep this engine’s
pecularities in mind when it comes to custom
patterns. Otherwise your own regex pattern will
not work. This is exactly the issue I ran into when
searching for a pattern which satisfied our special
requirements. The regular expression we ended
up with looked like this:

\A[\s\S]∗\nCaused by:\s∗ (?<RootCause>.∗)\Z

Listing 5: Regex for root cause extraction

The pattern matches the last line of any stack
trace that starts with Caused by and stops at the
end of the corresponding line (maching the text
after the colon). Anything that is captured by the
expression is stored in the additional RootCause
field.

Finally, this custom grok pattern can be used
to conclude the intended filtering. This is what
the following excerpt of our filter configuration
illustrates:

filter {
we check if there’s a stack trace available
if [StrackTrace] != ”” {

grok {
Everything that is matched by the pattern is
stored in the new ’RootCause’ field
match => {

”StackTrace” => ”[\s\S]∗\nCaused by: \
(?<RootCause>.∗:)[\s\S]∗”

}
}
}
}

Listing 6: Using a grok filter

At the beginning, it is made sure that the
message received from the previously defined in-
put actually is an exception. By the way, this
demonstrates that if-clauses can be applied to re-
strict the execution of filter plugins to scenarios
where a certain condition is met. This saves the

need for executing unnecessary regex operations,
which can be very expensive [19].

Since an exception does not necessarily have
to be caused by another one, we agreed that in
such a case, the particular exception should be
treated as the root cause. Listing 7 describes the
corresponding grok filter. The special thing here
is that this filter is only executed if the message’s
tags field contains the grokparsefailure value.
This tag is added by the grok plugin to indi-
cate that a message has been parsed, but did not
match the provided pattern. In our case that can
happen if a message is identified as an exception
(i.e. the StackTrace field is not empty), but does
not contain any Caused by clauses.

check for ’ grokparsefailure’ tag
if ” grokparsefailure” in [tags] {

grok {
assign the first line of the stack trace to the
’RootCause’ field
match => {
”StackTrace” =>

”(?<RootCause>Exception.∗?:)”
}
}
}

Listing 7: Grok filter in case of missing Caused by
clauses

Aside from parsing exceptions, we established
additional filters for removing white space or tags
we did not need. For clarity, these will not be pre-
sented at this point.

2.4 Passing messages to Elasticsearch

After having received and processed a message,
all that is left to do is to choose one or more des-
tinations to store the results. As for our team, for
now we were satisfied accumulating the output in
a single Elasticsearch data store. Because this is
a common scenario, it is not a big surprise that
there is already a suitable Elasticsearch output
plugin available [14].

With the aid of this plugin, establishing a
running Elasticsearch server as an output does
not take much more than specifying the server’s
host and port:

4

output {
elasticsearch {

hosts => ”localhost:9200”
}
}

Listing 8: Forwarding messages to Elasticsearch

For debugging purposes, it is also an option
to make use of the stdout output plugin which
prints the filter results on the command line [36].
Our report will come back to this later, since
we had to rethink the plugin’s settings when we
started discussing about how to deal with out-
dated logging messages residing in our Elastic-
search instance.

3 Elasticsearch fundamentals

3.1 Elasticsearch in a mini nutshell

Diving deeper into Elasticsearch, it is important
to forestall that this is probably the most com-
plex element of the whole logging tool stack.
Therefore, this section solely focuses on its very
basics and fundamental functions.

At its core, Elasticsearch is a full-text search
and analytics engine based on Apache Lucene [2].
Its probably greatest advantage is that it is not
only a high-performance data store. Moreover,
it allows searching and analyzing large amounts
of data in almost real time, what answers the
question of why not simply using a conventional
SQL database instead. Although Elasticsearch
can also be employed for recording application
data, in our case it serves as a storage for logging
messages it gets delivered by Logstash. This way,
we are able to watch out for various patterns in
our logs (e.g. high exception frequency), discov-
ering potential problems as soon as they occur
instead of noticing them after hours or even days
[17].

In order to achieve fault tolerance and relia-
bility, Elasticsearch comes with built-in mecha-
nisms which facilitate sharding, replication and
clustering. We narrowed down our experiment
to a single node, since the main focus of our
work lied on how to supervise growing systems
rather than scaling Elasticsearch itself. Never-
theless, characteristics like robustness may not
be constrained to only the applications bringing

the money. Hence, this topic is one of the next
points on our agenda [6].

3.2 Installation

Getting Elasticsearch up and running is just a
few steps away. The first pace is to add the cor-
responding repository to our apt sources, like we
did when setting up Logstash. Afterwards, the
actual installation process can be triggered. List-
ing 9 summarizes the necessary commands.

$ wget −qO − https://packages.elastic.co/GPG−
KEY−elasticsearch | sudo apt−key add −

$ echo ”deb http://packages.elastic.co/elasticsearch
/2.x/debian stable main” | sudo tee −a /etc/apt
/sources.list.d/elasticsearch−2.x.list

$ sudo apt−get update && sudo apt−get install
elasticsearch

Listing 9: Installing Elasticsearch [1]

Like Logstash, Elasticsearch immediately
starts running after the installation procedure
has finished.

3.3 Indices, types and documents

The smallest unit of information in the context of
Elasticsearch is a document. A document is con-
stituted by a single JSON object, representing a
concrete instance of an arbitrary domain object.
Once again, we see that JSON supersedes the
need for a specific and unconversant data format
[6].

For being able to group documents, Elastic-
search introduces the concept of indices. An in-
dex can be considered a collection of documents
with similar characteristics. [6].

Because arranging documents under different
indices is not a very granular approach, each in-
dex can besides be split up by defining one or
more so-called types. A type is nothing but a log-
ical partition of an index which allows a subtle
classification of an index’ documents [6].

5

3.4 Introducing the RESTful-API

A nice feature that makes working with Elastic-
search highly comfortable is its intuitive REST-
ful API, offering a clean and handy interface for
creating, reading, updating and deleting indices
or documents. Additionaly, rather than being re-
stricted to only operate the data residing inside
Elasticsearch, the API also enables users to query
the health of an Elasticsearch instance or taking
snapshots of its current state. The latter plays an
imortant role in the next section, when it comes
to how to backup logging data and clean up your
storage by removing outdated data sets. Since ev-
ery operation is just HTTP and JSON, one can
choose an arbitrary REST client or even com-
mand line tools like curl for talking to the API
[20].

As the feature set of the REST API as well as
of Elasticsearch itself is highly extensive, the pa-
per will focus on presenting a handful of common
operations which will provide a basic understand-
ing of how working with Elasticsearch feels like.
For everyone who is interested in the details, the
official documentation [20] is the place to go.

The first thing to be covered is creating an
index and adding a sample document. Listing 10
shows the structure of a command that generates
an index named heroes. In this scenario, curl is
used for building and sending HTTP requests.

$ curl −XPUT ’localhost:9200/heroes?pretty’

Listing 10: Creating a sample index [7]

Any index must be given a lower case name,
which requires the request to be a HTTP PUT
request. It becomes apparent that Elasticsearch
strictly follows the specification of a RESTful in-
terface, since the name and the location of the
desired resource (here: the newly created index)
must be specified. The pretty URI parameter in-
structs Elasticsearch to return its JSON response
in a properly formatted manner. Assumed that
an operation has been executed successfully, this
response at least contains an ACK flag [7]:

{
”acknowledged” : true
}

Listing 11: Elasticsearch response in case of
successfully executed operations [7]

The next step is to create one or more doc-
uments and add them to the new index (Listing
12).

$ curl −XPUT ’localhost:9200/heroes/dc−universe
/1?pretty’ −d ’

{
”name”: ”Batman”
}’

Listing 12: Creating a document [25]

The URI describes the target index (heroes),
a mandatory type (dc-universe) as well as the ID
(here: 1) that should be assigned to our new doc-
ument. If everything worked fine, Elasticsearch
sends an ACK along with a response body that
reflects what exactly has been persisted:

{
” index” : ”heroes”,
” type” : ”dc−universe”,
” id” : ”1”,
” version” : 1,
”created” : true
}

Listing 13: Response if storing a document has been
successful [25]

Conformable to the REST specification, the
ID value can be left out if a POST request is used
instead of PUT. In this case, it is generated by
the data store itself and published in the related
response [25].

As soon as a document is no longer needed,
it can be removed with a DELETE request. List-
ing 14 illustrates how to do this for the sample
document as well as the index.

$ curl −XDELETE ’localhost:9200/heroes/dc− \
universe/1?pretty’

$ curl −XDELETE ’localhost:9200/heroes?pretty’

Listing 14: Deleting a document as well as an index
[10]

As usual, both commands are ACKed if the
document and the index could have been re-
moved without errors [10].

6

3.5 Elasticsearch Query DSL

Besides creating and deleting indices or docu-
ments, they can of course be accessed with GET
requests by specifying the name of an index or a
document’s ID in the URI, which is not so dif-
ferent as far as the syntax is concerned and will
therefore not be skipped. In fact, the true power
of Elasticsearch lies in a sophisticated Search
API, built on a catchy and powerful JSON-based
Query DSL. Although its fundamentals are far
from being complicated, it provides a rich set of
features facilitating advanced and sometimes ob-
fuscating querying. Hence, this paragraph limits
itself to the very basics insofar they are relevant
to understand the subsequent explanations [34].

The Search API can be addressed
by sending well-formatted queries to the
http://{host:port}/{index}/ search URI,
whereupon the index part is optional. The re-
quest must be a GET request, transfering the
query as its payload. If we wanted to search for
the document we have created in the previous
section and all we know is the value assigned to
its name attribute, an appropriate query might
look like this:

$ curl −XGET http://localhost:9200/ search?pretty
−d

’{
”query”: {

”match”: {
”name”: ”Batman”
}

}
}’

Listing 15: Retrieving a document with the Query DSL
[34]

In order to live up to the amount of possible
queries and search options, there is a whole chap-
ter dedicated to this topic in the official docs [34].
For the scenario described in this paper, having
a basic idea of the big picture shall be sufficient.

4 Converting data into knowl-
edge

4.1 Data != information

So far, the paper only covered how to store and
retrieve data in Elasticsearch using REST inter-
faces and search queries. But solely having avail-

able a vast number of application logs in a data
store does not help anybody to supervise the
health of applications or servers.

Imagine a scenario where an upset client is
calling, complaining about his app being crashed.
It seems clear that hectically firing arbitrary
querys to Elasticsearch will probably not lead
to fast success while searching for the cause of
a failure. In order to prevent such an incident,
our team agreed that its essential to be perma-
nently informed about what is currently going on
in our systems. If something goes wrong, our goal
is to become aware of this in seconds. Thereby,
we are able to rapidly identify the reason of an
anomaly and take steps before the whole system
goes down.

4.2 Elasticsearch Watcher plugin

Since implementing such a tool from scratch
might take weeks, coming back to Watcher [15]
was a logical choice. Watcher is an Elasticsearch
plugin which allows to define actions that should
be triggered as soon as certain criteria are met.
To install the plugin, we have to run the plugin
installation script that ships with Elasticsearch:

$ {ELASTIC HOME}/bin/plugin install license
$ {ELASTIC HOME}/bin/plugin install watcher

Listing 16: Installing Watcher [18]

Notice that a special license has to be in-
stalled for being able to use the full range of
Watcher features. We will pick that up and high-
light the consequences when talking about the
plugin’s advantages and disadvantages [18].

Putting Watcher into operation requires the
definition of a so-called watch. Every watch con-
sists of four substantial components:

• Schedule: The time interval a certain con-
dition should be checked

• Query: The query that is executed on ev-
ery interval and which defines the input for
the condition

• Condition: The criterion the input is eval-
uated against

• Actions: What should be done in case the
defined criterion is met (e.g. sending an
email)

7

For testing purposes, we started with a sim-
ple use case: If an exception or error is thrown,
a notification mail should be sent to a support
account. Registering a watch that performs this
task might look like this:

$ curl −XPUT ’http://localhost:9200/ watcher/ \
watch/exception watch’ −d

’{
”trigger” : {

”schedule” : { ”interval” : ”10s” }
},

”input” : {
”search” : {

”request” : {
”body” : {

”query” : {
”bool” : {

”must” : [
{

”match” : { ”Severity” : ”Error” }
},
{

”range” : {
”timestamp” : {

”gte” : ”now−10s”
}
}
}

]
}
}
}
}
}
},

”condition” : {
”compare” : {

”ctx.payload.hits.total” : { ”gt” : 0 }
}
},

”actions” : {
”send mail” : {

”to” : ”support@mediacockpit.com”
”subject”: ”Hey, something’s going wrong here

..”
}
}
}’

Listing 17: Registering a sample watch [37]

In short, Listing 17 creates a watch that is
triggered every ten seconds. It queries Elastic-

search for records with Error severity that ap-
peared since the last execution of the watch
(now-10s). If the result count is greater than
zero, a warning email gets dispatched. The PUT
request has to address the / watcher REST in-
terface, along with the JSON payload transfering
the actual definition [37].

4.3 Nothing comes for free

Disregarding that watch definitions quickly be-
come kind of extensive, we were very excited
about Watcher. It offered us easy configuration
along with rich set of possible actions out of the
box. But the disillusion came quick: It turned
out that the license we had to install right at the
beginning was limited to 30 days. After this pe-
riod, a commercial license has to be purchased.
As there is no other way than buying a quite ex-
pensive license which comprises the full range of
available Elasticsearch plugins, we are currently
working on a custom solution which shall sup-
port a small subset of Watcher’s functionalities
[31].

5 Managing logging data

5.1 Log retention with Curator

Another thing we had to think of was how to
deal with persisted logging messages that are no
longer up to date. Since a bulk of outdated in-
formation slows down the searching process and
most likely is of secondary importance relating to
the current state of our applications, we decided
that every data set should only be stored by Elas-
ticsearch for a customizable transitory period.

Indeed, there is no built-in feature in Elas-
ticsearch to achieve this by e.g. setting a single
parameter which tells it to drop records that are
older than x days. However, when we discovered
Curator we experienced that we were not the
first team dealing with that issue. Curator is a
command-line tool written in Python and avail-
able under the Apache License, Version 2.0 in-
stead of a commercial one (see 4.3). One the one
hand, it was developed in favor of offering a con-
venient possibility to prevent Elasticsearch from
getting messed up with old data, convincing us
to give it a try. As another domain, Curator aims
at simplifying the creation of backups, which will
be covered in the next section [13].

8

Curator is a standalone application rather
than an Elasticsearch plugin and the recom-
mended way of installing it is via Pythons pip
package management tool [9]:

$ pip install elasticsearch−curator
$ curator −−version

Listing 18: Installing Curator [9]

5.2 Rethinking our indices

While exploring the Curator API, we became
aware that it does not support the appliance
of any Query DSL statements to explicitly se-
lect entries which shall be deleted. Instead of be-
ing that granular, Curator’s approach is purely
index-based, meaning that an index is the small-
est unit of data it can handle. This behavior
might be sufficient in most cases, but for us, prob-
lems arose concerning the default pattern used by
Logstash’s Elasticsearch output plugin to build
indices. Before an event gets forwarded, it cre-
ates the index field and assigns it a value fol-
lowing the pattern logstash-{YYYY.MM.dd}. As
a consequence, all the logging messages passing
Logstash at the same day are collected under the
same index, regardless of which application or
server they originally came from. In the context
of Curator, this lead to the implication that there
would be no option for us to define a dedicated
expiration date per application, because our in-
dices were completely date-based [14].

As we considered altering the index nam-
ing pattern much simpler than implementing
our own Curator clone, we watched out for
how to put that into practice. Fortunately, the
GELF application logs already provided informa-
tion about the origin app by themselves, storing
unique identifier inside the facility field.

output {
elasticsearch {

index => ”%{facility}−%{+YYYY.MM.dd}”
}
}

Listing 19: Adapting the Elasticsearch index pattern

The plugin’s index option allows the Elastic-
search index to be manually configured. So we

defined an index based on the app’s denomina-
tion and the current date and were finally ready
to focus on our cleanup efforts with Curator.

By the use of our redefined index, we were
able to elaborate individual cleanup strategies
for several running applications. Assuming there
is a virtual webapp that produces logging mes-
sages with ’myWebapp’ as a facility value, invok-
ing Curator with the following command removes
every entry under this index which is older than
14 days [8]:

$ curator delete indices −−regex ’myWebapp−∗’ \
−−older−than 14 −−time−unit days \
−−timestring ’%Y.%m.%d’

Listing 20: Cleaning up a sample index with Curator
[8]

A nice secondary effect of the adjusted index
pattern is that it scales very well. Any appliac-
tion which wants to transfer its logs to the log-
ging tool stack simply needs to define a facility
value in its GELF messages and automatically
receives a dedicated Elasticsearch index. So all
the logs produced by a certain application can
be managed independently.
For the last step, the command shown in List-
ing 20 was installed as a cronjob on the Ubuntu
VM, since relying on spaced manual execution
becomes redundant that way.

5.3 Backups

Backing up Elasticsearch contents makes sense
for two reasons: First, ereasing data permanently
when cleaning up Elasticsearch maybe is not the
best idea, since even outdated logs at a later date
may shed light on anomalies that could not be
detected immediately. Moreover, if a single node
crashes for some reason, it can be restared from
a stable state by means of up to date snapshots.

In opposition to what we did when discussing
the treatment of overage data sets, we did not
make use of Curator for our backups, although
this is another common use case of this tool.
The reason is that Curator lacks the possibility
to send notifications (e.g. an email) giving infor-
mation about at which time the backup process
has been triggered and if it has been successfully
conducted. However, we did not want to disclaim
that feature and therefore determined to develop
ElasticArchiver [43], our own Python tool, which

9

initiates the backup procedure, stores the result
(= snapshot) to the local file system and sends a
short email, advising the responsible staff of the
outcome.

For convenience, the script uses the requests
Python library [40] and communicates with Elas-
ticsearch via HTTP. It addresses the Snapshot
API available under the / snapshot URI, which
is yet another RESTful interface provided by
Elasticsearch [5].

Before any backups can be saved, there must
at least exist a single repository. A repository can
be a distributed file system, a storage service like
Amazon S3 or even the local file system, which
has been our choice as a start. Listing 21 shows
how to create a such a repository by means of a
PUT request [5].

$ curl −XPUT ’http://localhost:9200/ snapshot/
my repo’ −d ’{

”type”: ”fs”,
”settings”: {

”location”: ”/var/data/elasticsearch/backup”
}

}’

Listing 21: Creating a backup repository [5]

The request body includes information about
the repositiy type (fs = local file system) as well
as an absolute path determining where it should
be located [5].

All that is left to do is storing a snapshot
through another PUT request, addressing the
newly generated repository. The request might
look like this [5]:

$ curl −XPUT ’http://localhost:9200/ snapshot/
my repo/snapshot A’

Listing 22: Saving a snapshot to a repository [5]

In this case, the snapshot named snapshotA
contains all the records of every existing Elastic-
search index. It might be mentionable that if only
certain indices should be considered, this can be
specified inside an optional request body [5].

Listing 23 conveys an impression of how Elas-
ticArchiver builds upon the available REST in-
terfaces. It shows one method of its public API
which takes care of sending the snapshot re-
quest, receives a corresponding HTTP response
and transfers it to an evaluation routine, which

is responsible for examining the status code of
the reponse and triggering the confirmation email
sending procedure.

def startBackupProcess(self):
logging.info("Starting backup

process..")

"""sending a request which

triggers the backup creation"""

response = self.
sendBackupRequest()

"""check response and send an

email with the result"""

self. evalResponse(response)

Listing 23: ElasticArchiver public API

The sendBackupRequest method simply as-
sembles the URI (Listing 24) and sends the PUT
request after checking if the target repository is
ready (i.e. the repository already exists). This is
also a nice feature we have been missing in Cu-
rator, since it implements no fallback behavior
in case a repository is not available yet. If the
addressed repository is missing, ElasticArchiver
creates it on the fly and then stores a snapshot
to it.

def sendBackupRequest(self):
repoStatus = self.

isRepositoryReady()

if(repoStatus):
response = requests.put(

self. elasticURI

+ "/ snapshot/"

+ self. repositoryName

+ "/backup "

+ self. getCurrentDateTime(),

headers=self. requestHeader)

return response

Listing 24: ElasticArchiver public API

For an in-depth insight into ElasticArchiver,
consider the source code which is avail-
bale on Github under https://github.com/

PaddySmalls/elastic_archiver.

10

6 Kibana

6.1 Basics and installation

The third component of the ELK stack is Kibana,
which constitutes a highly configurable visualiza-
tion platform for Elasticsearch data. It allows to
import persistent logs and depict the results in
a understandable and intuitive manner, offering
lots of illustration possibilities like charts, dia-
grams and tables. Thus, getting a rough overview
of a server cluster and its state only demands in-
terpreting a user-friendly dashboard instead of
having immerge into Elasticsearch internals [26].

Already having installed Logstash and Elas-
ticsearch, setting up Kibana is business as usual
and can be done as shown in Listing 25 [23].

$ echo ”deb http://packages.elastic.co/kibana/4.4 \
/debian stable main” | sudo tee −a /etc/apt/ \
sources.list

$ sudo apt−get update && sudo apt−get install \
kibana

Listing 25: Installing Kibana [23]

After startup, Kibana asks for at least a single
default index pattern before it takes up employ-
ment. This index pattern may correspond to an
existing index, but can also be a regular expres-
sion matching several of them. Kibana then uses
this information to query all the data sets stored
under the appropriate index or indices. For ex-
ample, defining logstash-* as an index pattern
prompts the import of every entry whose index
starts with the this prefix [23].

Since establishing searching patterns con-
cerning our facility-based indices is almost ev-
erything we did for a start, a detailed discussion
about Kibana’s visualization capabilities shall be
skipped at this point. Of course, Kibana offers a
terrific number of possibilities to prepare and il-
lustrate information, which is essential in order
to get value out of the vast amount of logs pro-
duced by servers and webapps. Simultaneously,
this is also a matter of individual preferences and
requirements in the first place, and we are also
still working on a dashboard that works best for
us.

6.2 The ”Export Everything” excep-
tion

When we launched Kibana for the first time,
there was an interesting bug we ran into. Af-
ter having defined our first index pattern, every-
thing that has been displayed by the browser was
a blank page, decorated by the Kibana banner.
The browser console reported an internal server
error along with the HTTP status code 500, so
there must have been a problem with the Elas-
ticsearch server. Checking its log files, the error
log actually revealed an exception as the cause
of the discovered misbehavior. Summing up, the
error message told us something like:

Result window is too large [..] must be less than
or equal to: [10000] but was [2147483647].

Indeed, we were able to retrace a request sent
by Kibana, including a max result window pa-
rameter with a value of 2147483647 (which by
the way equals Java’s Integer.MAX VALUE or
231 − 1) assigned.

At the point we faced this issue, we could not
find a community-proved workaround to resolve
the problem. However, because we accidentially
installed Kibana 4.3 instead of the latest version
4.4, the error vanished after an update to the lat-
est version. In contrast to the previous version,
Kibana 4.4 employed a considerable lower value
(i.e. 10000) for the max result window, which
worked perfectly.

It was a few weeks later when an official
bug report appeared in the issue section of the
Kibana Github repository (issue #5524, Kibana
4.3 ”Export Everything” exception) [41], having
suggested that the bug seemed to be related to
Kibana rather than Elasticsearch. The discus-
sion in the ticket points out that the value for
the result window has been reduced with Elas-
ticsearch 2.1.0. Further investigation on the im-
pact of the result window as well as the reason
for its adaption guided us to another discussion
in the Elasticsearch forum [12] that explains the
background in detail. According to the latest con-
tribution, reducing the result window as much as
possible is a common practice to avoid the waste
of resources due to deep paging, which results
in discarding the bigger part of the search re-
sults since the majority of the data sets is merely
needed to encounter what has to be displayed on
a requested page. The higher the number of the

11

requested page, the larger the amount of data
that is thrown away. For more information on
this topic, please consider [12], where an exem-
plary calculation can be found.

Obviously, the Kibana developers forgot
about adjusting the result window request
parameter at first. However, simply blaming
Kibana for this kind of error is to easy. So far,
we could not find an answer to the question, why
Elasticsearch disregared the implementation of a
fallback in order to guarantee downward compat-
ibility.

7 Conclusion

For us, building our logging infrastructure from
scratch using ELK turned out as success. We es-
pecially learned to appreciate the advantages of a
homogeneous tool stack, since joining individual
components on to a functioning system could not
have been easier. Moreover, ELK benefits from
its large community, which made it grow to a
wide ecosystem consisting of additional tools and
plugins. Subsequently, it is no big deal to tie new
as well as legacy applications to ELK because of
its support for diverse logging frameworks and
message formats. In our case, getting our Media-
Cockpit staging systems to work with ELK de-
manded a minimum of extra configuration, since
all we needed was another log4j Appender.

Another advantage lies in the possibility to
prepare logs in a way that there is no need for a
user to be a software or systems engineer in order
to understand what going on inside a system.

Unfortunately, the Elastic business model
does not provide that their complete set of tools
comes for free. Nevertheless, the Elasticsearch
REST API particularly represents a great start-
ing point for putting your own ideas into practice,
as we proved ourselves with our ElasicArchiver
implementation.

8 Further thoughts

8.1 How to supervise a logging infras-
tructure?

A nontrivial question that emerged during our
work on a monitoring system was: How can we
ensure that not just our applications, but also
our logging systems are highly available and re-
liable? On closer inspection, a sample web ap-

plication consisting of a web server, an applica-
tion server as well as a database server is not
so different from an ELK stack, since both are
distributed systems which may fail due to arbi-
trary errors. By means of ELK, we can reduce
a webapp’s down time and therefore minimize
the associated business risks. However, what hap-
pens if the monitoring system itself falls down?
At first sight, this might be not as worse as ap-
plication failures. However, consider that as long
as the monitoring does not work, your systems
are on a blind flight. If anything goes wrong be-
fore the logging infrastructure has recovered, this
might have major implications. The more com-
plex a distributed system, the more reliable we
need our monitoring systems to be.

How to get a way from this dilemma? As for
Elasticsearch, Marvel [32] constitutes a possible
approach. It establishes agents on every Elas-
ticsearch instance as well as Kibana and uses
them to aggregate information about the nodes’
health state, which is then displayed on the
Marvel dashboard which integrates into Kibana.
Though, Marvel is also part of the Elastic license
bundle and thus not always affordable for every
small or medium-sized company. Moreover, Mar-
vel becomes useless in case Logstash or Kibana
fail. So, what to do?

Elastic encounters these challenges with a
mixture of sophisticated protection measures and
redundancy. Logstash for example builds upon
a ingenious thread model to protect itself from
overload and achieve fault tolerance. Besides,
just like Elasticsearch, Logstash can easily scale
out to multiple instances, which are able to bal-
ance the load across several Elasticsearch nodes
on their part [30].

On the whole, ELK is engineered to be as re-
liable and fault tolerant as possible. As employ-
ing another monitoring infrastructure to super-
vise an existing monitoring system does not re-
ally make sense due to the problem’s recursive
nature, replication and fault tolerance might be
the best approach at this juncture. However, es-
pecially replication always requires the availabil-
ity of additional resources and capacity. There-
fore, moving an ELK stack to a cloud provider
may be a worthwhile alternative especially for
smaller organizations. The Elastic company itself
offers the possibility to host Elasticsearch and
Kibana on their server infrastructure, but also

12

Amazon Web Services or DigitalOcean might be
a reasonable alternative. This way, a great part
of the risk to experience a total failure can at
least be delegated and subsequently underlies a
provider’s responsibility.

This paper can neither provide a final an-
swer the question introduced at the beginning,
nor give any hints how to come up to a log-
ging infrastructure that is 100 percent reliable
and available. However, it will be interesting to
observe how things will evolve from status quo.

8.2 Monitoring as a feature

Another interesting thought centers on regard-
ing monitoring systems not only as an addi-
tional burden that is needed to keep servers
and applications into operation, but also as a
part of a company’s business model. On the
one hand, monitoring can be inlcuded into an
organization’s marketing strategy, implicating a
high level of confidentiality in respect of the
products and services it offers. On the other
hand, especially Kibana has the potential to play
an important role as far as the communication
with customers is concerned. Because supervis-
ing a system with Kibana can also be done by
non-experts, an interested customer could al-
ways check the health state of the services he
or she purchased. Thereby, an application could
be more than a black box for a customer, which
would always be involved and would be able to
argue on the basis of metrics instead of just call-
ing and complaining that something does not
work as expected. As a consequence, e.g. a ven-
dors SLAs could be transparently verified, cre-
ating confidence between the two parties. Both
sides might profit from such an approach.

References

[1] Mitchell Anicas. How To Install Elastic-
search, Logstash, and Kibana (ELK Stack)
on Ubuntu 14.04. DigitalOcean. Mar. 10,
2015. url: https://www.digitalocean.
com / community / tutorials / how - to -

install - elasticsearch - logstash -

and-kibana-elk-stack-on-ubuntu-14-

04 (visited on 02/29/2016).

[2] Apache Software Foundation. Apache
Lucene. Apache LuceneTM 5.5.0 Docu-
mentation. 2016.

[3] Apache Software Foundation. Log4j – Log4j
2 Guide - Apache Log4j 2. 2015. url:
http : / / logging . apache . org / log4j /

2.x/ (visited on 03/28/2016).

[4] Apache Software Foundation. Log4j2 Ap-
penders. 2015. url: https : / / logging .

apache . org / log4j / 2 . x / manual /

appenders . html # SocketAppender (vis-
ited on 03/01/2016).

[5] Elastic. Backing Up Your Cluster. 2016.
url: https://www.elastic.co/guide/
en / elasticsearch / guide / current /

backing-up-your-cluster.html (visited
on 03/29/2016).

[6] Elastic. Basic Concepts. 2016. url: https:
/ / www . elastic . co / guide / en /

elasticsearch / reference / current /

_basic _ concepts . html (visited on
03/09/2016).

[7] Elastic. Create an Index. 2016. url:
https : / / www . elastic . co / guide /

en/elasticsearch/reference/current/

_create _ an _ index . html (visited on
03/10/2016).

[8] Elastic. Curator Examples. 2016. url:
https : / / www . elastic . co / guide /

en / elasticsearch / client / curator /

current / examples . html (visited on
03/29/2016).

[9] Elastic. Curator Installation. 2016. url:
https : / / www . elastic . co / guide /

en / elasticsearch / client / curator /

current/installation.html (visited on
03/29/2016).

[10] Elastic. Delete Index. 2016. url: https:

/ / www . elastic . co / guide / en /

elasticsearch / reference / current /

indices-delete-index.html (visited on
03/10/2016).

[11] Elastic. Elastic - Home. 2016. url: https:
/ / www . elastic . co/ (visited on
03/01/2016).

13

[12] Elastic. Elastic: Index max result window.
Discuss Elasticsearch, Logstash and
Kibana | Elastic. 2016. url: http :

/ / discuss . elastic . co / t / index -

max - result - window / 38388 (visited on
03/20/2016).

[13] Elastic. elastic/curator. GitHub. 2016.
url: https : / / github . com / elastic /

curator (visited on 03/29/2016).

[14] Elastic. Elasticsearch. 2016. url: https:

/ / www . elastic . co / products /

elasticsearch (visited on 03/01/2016).

[15] Elastic. elasticsearch. 2016. url: https :

/ / www . elastic . co / guide /

en / logstash / current / plugins -

outputs-elasticsearch.html (visited on
03/08/2016).

[16] Elastic. Elasticsearch Reference - Getting
Started. 2016. url: https : / / www .

elastic.co/guide/en/elasticsearch/

reference/current/getting-started.

html (visited on 03/09/2016).

[17] Elastic. Elasticsearch Watcher: Introduc-
tion. 2016. url: https : / / www .

elastic . co / guide / en / watcher /

current/introduction.html (visited on
03/11/2016).

[18] Elastic. Elatsicsearch Watcher - Getting
Started. 2016. url: https : / / www .

elastic . co / guide / en / watcher /

current/getting-started.html (visited
on 03/11/2016).

[19] Elastic. Event Dependent Configuration.
2016. url: https : / / www . elastic .

co / guide / en / logstash / 2 . 2 / event -

dependent-configuration.html (visited
on 03/29/2016).

[20] Elastic. Exploring Your Cluster. 2016. url:
https : / / www . elastic . co / guide /

en/elasticsearch/reference/current/

_exploring_your_cluster.html (visited
on 03/10/2016).

[21] Elastic. Filter plugins. 2016. url: https:
//www.elastic.co/guide/en/logstash/

current/filter-plugins.html (visited
on 03/04/2016).

[22] Elastic. gelf. Dec. 10, 2015. url: https:

//www.elastic.co/guide/en/logstash/

current / plugins - inputs - gelf . html

(visited on 03/04/2016).

[23] Elastic. Getting Kibana Up and Running.
2016. url: https://www.elastic.co/

guide/en/kibana/current/setup.html

(visited on 03/29/2016).

[24] Elastic. grok. grok. 2016. url: https://
www.elastic.co/guide/en/logstash/

current/plugins- filters- grok.html

(visited on 03/04/2016).

[25] Elastic. Index and Query a Document.
2016. url: https://www.elastic.co/

guide / en / elasticsearch / reference /

current / _index _ and _ query _ a _

document.html (visited on 03/10/2016).

[26] Elastic. Introduction. 2016. url: https :

//www.elastic.co/guide/en/kibana/

current/introduction.html (visited on
03/18/2016).

[27] Elastic. Kibana. 2016. url: https://www.
elastic.co/products/kibana (visited on
03/01/2016).

[28] Elastic. log4j. 2016. url: https://www.

elastic . co / guide / en / logstash /

current/plugins- inputs- log4j.html

(visited on 03/03/2016).

[29] Elastic. Logstash. 2016. url: https : / /

www . elastic . co / products / logstash

(visited on 03/01/2016).

[30] Elastic. Logstash Processing Pipeline. 2016.
url: https://www.elastic.co/guide/
en/logstash/current/pipeline.html

(visited on 03/20/2016).

[31] Elastic. Managing Your License. 2016.
url: https : / / www . elastic . co /

guide/en/watcher/current/license-

management.html (visited on 03/29/2016).

[32] Elastic. Marvel Documentation [2.2]. 2016.
url: https://www.elastic.co/guide/
en/marvel/current/index.html (visited
on 03/20/2016).

[33] Elastic. Package Repositories. 2016. url:
https : / / www . elastic . co /

guide / en / logstash / current /

package-repositories.html (visited on
02/29/2016).

14

[34] Elastic. Query DSL. 2016. url: https :

/ / www . elastic . co / guide / en /

elasticsearch / reference / current /

query-dsl.html (visited on 03/10/2016).

[35] Elastic. Setting Up an Advanced Logstash
Pipeline. 2016. url: https : / / www .

elastic . co / guide / en / logstash /

current/advanced-pipeline.html (vis-
ited on 02/29/2016).

[36] Elastic. stdout. 2016. url: https : / /

www.elastic.co/guide/en/logstash/

current / plugins - outputs - stdout .

html#plugins-outputs-stdout (visited
on 03/09/2016).

[37] Elastic. Watch Log Data for Errors. 2016.
url: https://www.elastic.co/guide/
en/watcher/current/watch-log-data.

html (visited on 03/11/2016).

[38] Graylog. GELF. Graylog2/documentation.
Feb. 15, 2016. url: https : / / github .

com/Graylog2/documentation (visited on
03/04/2016).

[39] Graylog. Graylog2/log4j2-gelf. GitHub.
Mar. 4, 2016. url: https : / / github .

com/Graylog2/log4j2- gelf (visited on
03/04/2016).

[40] Kenneth Reitz. Requests: HTTP for Hu-
mans — Requests 2.9.1 documentation.
2016. url: http : / / docs . python -

requests . org / en / master/ (visited on
03/29/2016).

[41] Kibana 4.3 ”Export Everything” exception
· Issue #5524 · elastic/kibana. GitHub.
Dec. 9, 2015. url: https://github.com/
elastic/kibana/issues/5524 (visited on
03/20/2016).

[42] kkos. oniguruma. GitHub. 2016. url:
https://github.com/kkos/oniguruma

(visited on 03/29/2016).

[43] Patrick Kleindienst. PaddySmalls/elas-
tic archiver. GitHub. 2016. url: https :

//github.com/PaddySmalls/elastic_

archiver (visited on 03/29/2016).

15

