
Fully Convolutional Networks for
Semantic Segmentation

from RGB-D images

Master Thesis
Computer Science and Media

Submitted by:
Nicolai Harich
Mat.-Nr. 29308

First Reviewer: Prof. Dr. Johannes Maucher (Hochschule der Medien)

Second Reviewer: Dipl. -Ing. Matthias Roland (Bosch Start-Up GmbH)

March 2016

Title: Fully Convolutional Networks for Semantic Segmentation
from RGB-D images

Abstract: In recent years new trends such as industry 4.0 boosted the research and
development in the field of autonomous systems and robotics. Robots collaborate and
even take over complete tasks of humans. But the high degree of automation requires
high reliability even in complex and changing environments. Those challenging
conditions make it hard to rely on static models of the real world. In addition to
adaptable maps, mobile robots require a local and current understanding of the scene.
The Bosch Start-Up Company is developing robots for intra-logistic systems, which
could highly benefit from such a detailed scene understanding. The aim of this work
is to research and develop such a system for warehouse environments. While the
possible field of application is in general very broad, this work will focus on the
detection and localization of warehouse specific objects such as palettes.
In order to provide a meaningful perception of the surrounding a RGB-D camera is
used. A pre-trained convolutional network extracts scene understanding in the form
of pixelwise class labels. As this convolutional network is the core of the application,
this work focuses on different network set-ups and learning strategies. One difficulty
was the lack of annotated training data. Since the creation of densely labeled images
is a very time consuming process it was important to elaborate on good alternatives.
One interesting finding was that it’s possible to transfer learning to a high extent from
similar models pre-trained on thousands of RGB-images. This is done by selective
interventions on the net parameters. By ensuring a good initialization it’s possible
to train towards a well performing model within few iterations. In this way it’s
possible to train even branched nets at once. This can also be achieved by including
certain normalization steps. Another important aspect was to find a suitable way
to incorporate depth-information. How to fuse depth into the existing model? By
providing the height over ground as an additional feature the segmentation accuracy
was further improved while keeping the extra computational costs low.
Finally the segmentation maps are refined by a conditional random field. The joint
training of both parts results in accurate object segmentations comparable to recently
published state-of-the-art models.

Keywords: Semantic Segmentation, Deep Learning, Convolutional Neural Networks,
Fully Convolutional Neural Networks, multimodal, RGB-D, FCN, CNN, CRF
Date: March 2016

Titel: Neuronale Netze zur semantischen Bildsegmentierung von RGB-D Bildern

Abstract: Aktuelle Themen, wie zum Beispiel Industrie 4.0, haben Fortschritte im
Bereich autonomer Systeme und Robotik vorangetrieben. Roboter kollaborieren
mit Arbeitern oder übernehmen komplette Arbeitsschritte. Dieser hohe Automa-
tisierungsgrad erfordert, dass solche Systeme, selbst in komplexen Situationen und
Umgebungen, hochgradig zuverlässig und sicher arbeiten. Statische Modelle zur
Abstrahierung der Umgebung sind unzureichend. Mobile Roboter benötigen neben
dynamischen Lokalisierungskarten bestenfalls auch ein Verständnis der Umgebung.
Die Bosch Start-Up GmbH entwickelt Roboter, welche zukünftig in Warenlagern
eingesetzt werden sollen. Diese würden von einem solchen Verständnis profitieren.
Das Ziel war es aktuelle Erkenntnisse aus der Forschung zur semantischen Segmen-
tierung mithilfe von Deep Learning Techniken zu einer prototypischen Anwendung
zu transferieren. Die entwickelte Anwendung im Allgemeinen zwar universell einset-
zbar, der Fokus dieser Arbeit liegt jedoch auf der Segmentierung von Objekten aus
einem typischen Warenlager (bspw. Paletten).
Die Segmentierung basiert auf den Bildern einer RGB-D Kamera und ermöglicht
gleichzeitig eine räumliche Lokalisierung von Objekten. Ein spezielles tiefes neu-
ronales Netz (FCN) führt die komplette Segmentierung durch. Die Arbeit beschäftigt
sich schwerpunktmäßig mit der Adaption und dem Training eines solches Netzes.
Die Bereitstellung von annotatierten Daten ist äußerst aufwändig. Um die Zahl
der nötigen Daten gering zu halten wurden geeignete Techniken eingesetzt. Dazu
wurden Modellparameter frei zugänglicher Netze transferiert, um eine möglichst
gute Initialisierung sicherzustellen. Außerdem wurden Normalisierungsschritte
in die Netzarchitektur eingeführt, sodass auch verzweigte Strukturen in einem
Trainingslauf trainiert werden können. Ein wichtiger Aspekt ist zudem die Ein-
beziehung von Tiefeninformation in den Segmentierungsprozess. Das finale Netz
berücksichtigt neben RGB-Daten auch eine Höheninformation. Dadurch wurde die
Segmentierungsqualität mit nur geringem zusätzlichen Rechenaufwand verbessert.
Zudem wurde ein Conditional Random Field zur iterativen Verfeinerung der Seg-
mentierung eingesetzt. Das gemeinsame Training beider Komponenten, FCN und
CRF, hat dazu beigetragen, dass die Qualität der Ergebnisse sich im Bereich aktueller
Forschungsarbeiten bewegen.

Schlagwörter: Semantic Segmentation, Deep Learning, Convolutional Neural Net-
works, Fully Convolutional Neural Networks, multimodal, RGB-D, FCN, CNN, CRF
Datum: March 2016

Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction 1

2 Background and Related Work 3
2.1 Semantic Segmentation . 3
2.2 Convolutional Neural Networks . 4

2.2.1 Feed-Forward Neural Networks 5
2.2.2 Convolutional Neural Networks 11
2.2.3 Fully Convolutional Neural Networks 14

2.3 Conditional Random Fields . 16
2.4 Incorporating Depth into CNNs . 23

2.4.1 Depth Encoding . 23
2.4.2 Multimodal Deep Learning . 26

3 Technical Approach 28
3.1 Kinect v2 . 28
3.2 Caffe - A Deep Learning Framework . 30
3.3 Robot Operating System (ROS) . 32
3.4 Point Cloud Library (PCL) . 34
3.5 Open Source Computer Vision (OpenCV) 35
3.6 Image Annotation Tool . 35

4 Implementation and Results 37
4.1 Data . 37
4.2 Evaluation . 47

4.2.1 Metrics . 47
4.3 On the Base Network: Model Definition and Training 50

Contents

4.4 Preliminary Experiments . 52
4.4.1 Initialization Phase . 53
4.4.2 Spatial Accuracy Refinement . 59
4.4.3 Multimodal Fusion . 63

4.5 Final Approach . 67

5 Future Work and Conclusion 72

A Appendix 75
A.1 Segmentation Results . 75

Bibliography 82

List of Figures

1.1 Scene parsing example - image to text (Retrieved from [2], p.1) 1

2.1 Example image semantic segmentation . 3
2.2 Feed-forward neural network . 6
2.3 Dropout . 10
2.4 Exemplary filter responses of a CNN. 12
2.5 Max and average pooling . 12
2.6 FCN - Fully Convolutional Network (Retrieved from [23], p.1) 14
2.7 FCN - convolutionalization (Retrieved from [23], p.3) 15
2.8 FCN - skip-architecture (Retrieved from [23], p.6) 16
2.9 The permutohedral lattice for fast Gaussian filtering. (Retrieved from

[27], p.5) . 20
2.10 CRF-RNN - Coupling of FCN and CRF (Retrieved from [29], p.6) . . . 20
2.11 CRF-RNN - iterative-meanfield (Retrieved from [29], p.6) 21
2.12 CRF-RNN - meanfield iteration (Retrieved from [29], p.4) 21
2.13 Exemplary HHA image . 25
2.14 Navier Stokes Inpainting: Propagating along isophotes 25
2.15 "Late fusion" net-architecture (Figure based on [35], p.1, fig. 1) 26
2.16 "Early fusion" net-architecture (Figure based on [35], p.1, fig. 1) 27

3.1 Kinect v2 . 28
Retrieved from: http://static1.squarespace.com/static/51df34b
1e4b08840dcfd2841/t/56996b391a5203aa7d499cb8/1452895036930/

Last visited: 2016-02-11
3.2 ToF - continuous wave . 29

Retrieved from: http://campar.in.tum.de/twiki/pub/Chair/Teach
ingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf

Last visited: 2016-03-07
3.3 ROS graph for semantic segmentation . 33
3.4 PCL as a graph of libraries . 34

Retrieved from: http://pointclouds.org/assets/images/about/pc
l_dependency_graph2.png

Last visited: 2016-02-17

http://static1.squarespace.com/static/51df34b1e4b08840dcfd2841/t/56996b391a5203aa7d499cb8/1452895036930/
http://static1.squarespace.com/static/51df34b1e4b08840dcfd2841/t/56996b391a5203aa7d499cb8/1452895036930/
http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf
http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf
http://pointclouds.org/assets/images/about/pcl_dependency_graph2.png
http://pointclouds.org/assets/images/about/pcl_dependency_graph2.png

List of Figures

3.5 Screenshot: Annotation Tool . 36

4.1 Training sample: RGB and HHA image . 43
4.2 Efficient inpainting pipeline. 43
4.3 Augmentation . 45
4.4 Trimap example. 49
4.5 "VGG16" - A very deep CNN. 50
4.6 The impact of extensive transfer of learning. 55
4.7 Feature activations of pool3, pool4 and fc7. 56
4.8 Modified skip-architecture. 57
4.9 The impact of L2 normalization. 58
4.10 Initialization: visual comparison . 59
4.11 CRF convergence . 61
4.12 Methods for spatial refinement . 62
4.13 Accuracy at object boundaries. 62
4.14 Learned fusion of RGB-H. (Figure based on [35], p.1, fig. 1) 66
4.15 Comparison of RGB and RGB-H net. 67
4.16 Results . 69
4.17 ROS - visualization pipeline . 70
4.18 Screenshot of rviz - showing a segmented image and pointcloud. . . . 71

A.1 Segmentation results . 79
A.2 Results . 80

List of Tables

3.1 Kinect v1 vs. v2 - specs . 30
3.2 Tesla K-80 board - specification . 31

4.1 Train/val/test sizes . 39
4.2 Class frequencies . 40
4.3 Class frequencies after balancing. 47
4.4 Comparison: initialization variants . 58
4.5 Late Fusion of VGG16-VGG16 vs. VGG16-Alex 64
4.6 Compare early fusion w and w/o normalization. 65
4.7 Test results for RGB-H network. 66
4.9 Per-class results for the final network. 68
4.8 Test results for final network. 68

A.1 Net configuations . 75
A.2 Test results . 75
A.3 Per-class results for (a). 76
A.4 Per-class results for (b). 76
A.5 Per-class results for (c). 76
A.6 Per-class results for (d). 77
A.7 Per-class results for (e). 77
A.8 Per-class results for (f). 77
A.9 Per-class results for (g). 78
A.10 Per-class results for (h). 78
A.11 Per-class results for (i). 78

List of Abbreviations

CNN

Convolutional Neural Network

CRF

Conditional Random Field

DNN:

Deep Neural Network

FCN

Fully Convolutional Neural Network

FPGA

Field Programmable Gate Array

GD

Gradient Descent

GPU

Graphics Processing Unit

H

Height

HHA

Height, Horizontal Disparity, Angle w.r.t. Surface Normals

mIU

Class-mean of the intersection over union metric.

PA

Pixel-accuracy

List of Abbreviations

PCL

Point Cloud Library

mPA

Class-mean of the Pixel-accuracy

ReLU

Rectified Linear Unit

RNN

Reccurent Neural Network

SGD

Stochastic Gradient Descent

SIFT

Scale Invariant Feature Transform

ToF

Time of Flight

1 Introduction

Scene understanding is one of the most challenging tasks in computer vision and
plays an important role for many novel and future applications - such as autonomous
driving or automated image tagging. One can ask many questions about a scene:
Which kind of objects are visible and how are they related to each other? What kind
of place is it? What are the environmental conditions? Is it sunny or rainy?
The specific use case determines the choice of the questions. In case of autonomous
driving, it’s for example important to detect obstacles on the lane.
While humans can easily capture a scene at a glance, it’s very hard for a machine.
Semantic segmentation is one important step towards scene understanding. The
goal is to segment a given image into coherent regions and to assign a label to
it.

Figure 1.1: Scene understanding enables many novel applications. For example
an "Image Caption Generator". By combining computer vision and natural
language processing (NLP) techniques it’s possible to generate descriptive
sentences for images [1] [2].

The history of neural networks reaches far back into the past. In the mid-1980s the
first deep neural networks were applied to recognition tasks. Although this was a
scientific success, the interest decreased again, since the training took too much time.
After many years, the development of larger, faster and cheaper computing units led
to a revival of deep learning techniques. Deep Learning has already been successfully
applied in many fields. New architectures, algorithms and tools popped up within a
short time.
In the scope of this work I’ve examined on these new techniques in order to transfer
them to a specific use case. The task was to develop a processing pipeline for semantic

1

1 Introduction

segmentation, which could be used within an autonomous system - more specifically
a forklift.
Such a system could benefit from a detailed and current scene understanding. For
example, it’s important to know if there are any obstacles that need to be bypassed.
An improved system would even distinguish between different obstacles. For exam-
ple, persons should possibly get special attention. People want to feel safe. To ensure
acceptance among workers it would be a good idea to drive particularly careful in
the presence of them.
The aim of this work was to elaborate intensively on the topic of semantic segmenta-
tion in order to identify opportunities. The development process was aligned on the
current state of research.
Since there was no preliminary work, it was necessary to establish a general frame-
work. Several design choices had to be done, data had to be collected and annotated.
Gradually, the difficulties came to light. The main contribution of this work is the
combination of current state of the art techniques to process RGB-D camera data for
semantic segmentation. The main challenge was to handle difficulties due to a very
limited training-set. To achieve good results, despite the difficult conditions, it was
necessary to investigate on different approaches. Specifically, I have dealt with the
following topics:

• neat ways for data augmentation

• extensive transfer of learning

• normalizing techniques to facilitate learning

• techniques for multi-modal deep learning

Aside from the initial motivation of this work, the final system is suitable for general
use. The system can be easily adapted by exchanging the training data and specifying
other categories.

The thesis is organized as follows. First I outline the topic and provide insights into
the current state of research. After that the used hard- and software is introduced.
In chapter 4 I jointly present my approaches and results. The chapter is divided
into sections to investigate on different aspects. In order to allow an immediate
assessment I will provide the experimental results directly. The results of these
preliminary studies serve as a basis for the design of the final system. The last chapter
summarizes essential results and gives a conclusions. Furthermore I will present
ideas for future works.

2

2 Background and Related Work

This chapter builds the theoretical foundation of my work and provides insights
into state-of-the-art research. Sub-topics are organized in a consecutive order. First I
explain the task of semantic segmentation. Then I describe neural networks in general
and introduce subsequently more specialized networks. Moreover, the main ideas
of Conditional Random Fields (CRF) are explained, as they play an import role for
this work. Furthermore I will introduce different techniques to leverage from depth
information.

2.1 Semantic Segmentation

Semantic segmentation can be understood as a classification task at pixel-level. In
the literature the terms "scene parsing" or "image parsing" are frequently used in the
same context.
The task is to determine a two-dimensional classification map of same size as the
input image. This map assigns an object-class of a pre-defined set to each pixel. The
output is helpful to provide a detailed scene understanding. Such an understanding
is in particular useful for autonomous systems.

Figure 2.1: Exemplary image to illustrate semantic segmentation. The object
category of each pixel is identified by a specific label.

3

2 Background and Related Work

Semantic segmentation unifies several fundamental problems of computer vision.
First a proper and robust representation of the input space is needed. In particular
local features are of interest, as they provide an abstract description of the image
content. These features are used to carry out local classifications. A main challenge of
semantic segmentation is to achieve robust classifications while preserving spatial
resolution.
The attempt of this work is to solve the entire problem of semantic segmentation with
the help of deep learning techniques and claims to unify all subtasks into a single
trainable system. In the following I recap the most important topics related to the
system. Moreover I give a compact overview of recent related works and point out
alternative approaches.

2.2 Convolutional Neural Networks

The conventional approach to solve a classification problem is to decompose it into at
least two independent subtasks - feature extraction and classification. The process
of feature engineering can be very complex, typically requires domain expertise and
a lot of development time. A popular example for a hand-crafted visual feature is
SIFT developed by David Lowe. Lowe has put a lot of effort in the development of a
feature, which is invariant to image scale and rotation (SIFT stands for "scale-invariant
feature transform") [3]. SIFT has been successfully applied for instance for object
recognition or panorama stitching.
The downside is that these features are very rigid and do not automatically adapt to
the problem. The classification step however has always been a machine learning
approach. Based on the extracted features any appropriate classification algorithm
can be applied (e.g. a support vector machine).
An alternative approach is to integrate both feature extraction and classification into
one learning process. Since the features are learned automatically there is no need
for expert domain knowledge and time-consuming engineering. Furthermore it is
possible to train feature extraction and classification in an end-to-end manner, which
allows a better optimization and adaption of both parts.
This work uses a special convolutional neural network (CNN), which extracts features
and classifies the input image pixel-wise for semantic segmentation.
For the sake of a step-wise introduction I will first introduce feed-forward neural net-
works and explain the basic concepts of neural networks. This will build the theoreti-
cal basis for my explanations in the subsequent chapters.

4

2 Background and Related Work

2.2.1 Feed-Forward Neural Networks

Feed-forward networks are collections of neurons, which are organized in layers
1, ..., L. Every neuron of layer l > 1 is connected to all neurons of the previous layer
l − 1. When deployed a feed-forward net has a distinct direction ("forward pass") and
there are no cycles (feedback loops). The layers are distinguished between input,
output and hidden layers. Hidden layers are located between the input and output
layer and therefore do not have a direct connection to the environment.
The special case where the network consists of only two layers (in- and output) is
called single-layer perceptron. Since the input layer is not parameterized, it is fre-
quently not considered as a layer. For this reason, it is called single-layer perceptron.
More usual are the so called multi-layer perceptrons, where multiple layers are
stacked on top of each other. Thus, such a multi-layer perceptron has at least one
hidden layer.
Figure 2.2 shows a simple network with an input-, a hidden- and an output-layer.
Each connection between two neurons i and j is associated with a weight wj,i

(l). The
superscript l denotes the number of the layer. These weights are used to calculate a
weighted sum of all J inputs. In general there are also bias-terms bi

(l) associated to
each neuron. This bias term shifts the weighted sum by a certain amount.
This intermediate result is then processed by a so-called activation function h. Usu-
ally this function applies a non-linear transformation. The result al

i is the output of
the neuron and possibly serves as input for the next layer (if layer l is a hidden layer).
Equation 2.1 shows the formula for calculating the activation al

i of a specific neuron
located at position i in layer l for J inputs xj:

al
i = h(bl

i +
J

∑
j=1

wl
j,i ⋅ xj) (2.1)

where:

al
i is the activation of neuron i at layer l

h(x) is the activation function

wl
j,i is the weight of neuron i at layer l associated with input neuron j

b is the bias of neuron i at layer l

xj input (result of neuron j when l > 1)

5

2 Background and Related Work

Typical activation functions are the sigmoid (logistic) or the hyperbolic tangent func-
tion. In this work so-called rectified linear units (ReLU) were used:

hReLU(x) = max(0, x) (2.2)

ReLUs employ a simple ramp function and are crucial for the success of recent deep
networks [4]. [5].

Figure 2.2: This exemplary feed-forward network consists of one input-, one
hidden- and one output-layer. The neurons, visualized by solid circles, are
organized in layers l. Each connection between two neurons is associated with
a (learned) weight wl

i,j. The weighted sum of the input values plus a bias term
bl

i is then fed into an activation function, which results in the activation al
i . The

values are propagated throughout the entire network. Finally, the output layer
is reached which produces the net output ŷ.

A neural network is entirely defined by its structure (topology), the activation func-
tions and its parameters (namely weights and biases). In general a neural network
can approximate any finite function [6].
To handle discrete outputs, such as it is needed for classification tasks, a probability
function for each of the defined states can be trained in order to finally select the class
with the highest probability. Usually, the probabilities are obtained by applying a
softmax normalization (see equation 2.3) in the output layer. An exponential function
exp(ŷn,yn) turns the class prediction into a non-negative value. Then this value is
normalized by the denominator to fit the [0, 1] range. In this way all class probabilites

6

2 Background and Related Work

sum up to 1.

σc =
exp(ŷn,yn)
C
∑
c=1

exp(ŷc)
(2.3)

where:

C is the number of classes

ŷc is the predicted class score with c = 1, ..., C

ŷn,yn is the predicted class score of the true class yn for sample n

The parameters of a neural network are learned based on training samples. In case
of supervised learning, where a labeled training set is given {(xn, yn)}, all misclas-
sifications have to be penalized by a suitable loss function l(ŷn, yn), also called cost
function. This loss function must be minimized. Usually, a regularization term r is
added in order to preserve the model from overfitting. This occurs when individual
parameters dominate over others. The weights should be kept as small as possible.
This why the regularization term is also called "weight decay". This can be achieved
by minimizing the L2 norm of the parameter vector. The balance between regulariza-
tion and loss is controlled by a hyperparameter α. In summary the regularized error
function E is as follows:

E(w, b) = l(ŷn, yn)+ α ⋅ r(w) (2.4)

where:

w weight

b bias

yn is the class label i.e. the true class

ŷn is the class prediction

α is the multiplier for the regularization term

r(w) is the regularization term (weight decay)

A popular loss function for multi-class classification objectives is the multinomial
logistic loss. Passing class probabilities σ conditioned on the input data xn, the
multinomial logistic loss is the negative log-likelihood of the true class yn. The total
loss ltot of one training batch is given by the sum over all samples N. Equation
2.5 shows the normalized multinomial logistic loss l which additionally includes a
normalization term 1/N:

7

2 Background and Related Work

l = − 1
N

N
∑
n=1

log(σn,yn) (2.5)

where:

N is the number of training samples

yn is the class label i.e. the true class

σn,yn is the class probability conditioned on the input of the true class yn

As previously mentioned, the training process aims to adopt the parameters such
that the loss is minimized over all training samples. Thus, we search the function
f parametrized by w, which minimizes the loss Q(x, y, w) = l(fw(x), y) averaged
over the examples (i.e. pairs of x and y). A standard technique for solving non-
linear optimizing problems is gradient descent (GD) [7]. GD iteratively adopts
variables towards the direction of the negative gradient. This way a local mini-
mum can be found. The learning rate γ determines the steps size of each adapta-
tion.

wt+1 = wt −γ
1
N

N
∑
n=1

∇w Q(xn, yn, wt) = wt −∆wt (2.6)

where:

w are the weights

γ is the learning rate

Q is the loss function

∇w is the gradient w.r.t. w

∆wt is the weight update

N number of samples

According to equation 2.6 the weight update ∆wt incorporates all training samples
{(xi, yi)}.
An abreviation of GD is the stochastic gradient descent (SGD) method [8]. SGD
shows its strengths when the training set is very large. Instead of computing the
gradient based on all samples, only one or a few randomly chosen samples are con-
sidered. The updated weight wt+1 in the following equation is based on a randomly
chosen example xt.

8

2 Background and Related Work

wt+1 = wt −γt ∇w Q(xt, wt) = wt −∆wt (2.7)

where:

w are the weights

γ is the learning rate

Q is the loss function

∇w is the gradient w.r.t. w

∆wt is the weight update

An extension of SGD is momentum [7]. Momentum helps to speed up the learning pro-
cess by adding a fraction m of the previous weight update.

wt+1 = wt − (∆wt +m ∆wt−1) (2.8)

where:

w are the weights

∆wt is the weight update

m is the momentum parameter

If both weight updates point towards the same direction the step size is amplified.
In case of changing gradients momentum smooths out the variations and provides
stability.

By providing training samples x and y, a single layer perceptron can be optimized
by any GD variant. This is because the in- and outputs of the single weight layer are
known. Therefore the delta term or error ŷ − y is directly computable. This is not the
case for networks including hidden layers.
This fact is the motivation for applying the so-called backpropagation algorithm [7].
In order to adjust the parameters of hidden layers the error is propagated subsequen-
tially back through the net. This process is called backward pass. The parameter
adjustment (i.e. the delta term) of layer l depends on the activation of the same layer,
the weights and the delta terms of the subsequent layer l + 1. The activations are
determined during the forward pass. In this way the partial derivatives w.r.t. the
parameters of each neuron can be determined (chain rule). Gradient descent uses
these delta terms for updating the parameters.

9

2 Background and Related Work

Dropout invented by Hinton et al. is another powerful regularization tool for training
neural networks [9]. For each iteration dropout randomly turns off a portion of
neurons (see figure 2.3).

(a) before (b) after

Figure 2.3: Demonstrating the effect of dropout applied on a simple neural net-
work. Dropout randomly removes a portion of connections between subsequent
layers and produces a thinned net [10].

That way each hidden unit is encouraged to learn meaningful features without rely-
ing to much on other hidden units. More precisely, randomly chosen submodels are
trained, thus comparable to ensemble learning. At test time the predictions are aver-
aged. This leads to significantly better generalization [10].

Neural networks trained by the backpropagation algorithm suffer from the so-
called "vanishing gradient problem" [11]. Especially for very deep networks this
effect is even amplified. For example the gradient h’(x) of the sigmoid function
h(x) = (1+ exp(−x))−1 tends towards zero as ∣x∣ increases. This cumbers the learning
process and limits the network size for end-to-end training. In practice this problem
is attenuated by using ReLUs, careful initialization [12][13] and small learning rates.
Furthermore, very deep networks are usually trained step by step - i.e. the size of the
network is gradually increased [5].

10

2 Background and Related Work

Parametric ReLUs (PReLU) include an adjustable slope for the negative part. This
slope can be controlled by a factor si.

h(x) = max(0, x)+ simin(0, x). (2.9)

where:

si factor to control slope for the negative part

He et al. have recently shown that learning the PReLU parameter si together with an
improved random initialization helps end-to-end learning of large networks [13].
Another attempt for preventing the "vanishing gradient problem" was described by
Ioffe and Szegedy [11]. They normalize the inputs of the activation functions such
that the distribution remains stable during training.

2.2.2 Convolutional Neural Networks

In the previous section the main ideas of feed-forward networks were introduced.
A Convolutional Neural Network (CNN) is a special type of feed-forward neural
network.
CNNs are inspired by the biological processes of visual perception. Therefore CNNs
are mainly used for image and video applications. In principal there are three exten-
sions that distinguishes a CNN from a simple feed-forward network: local receptive
fields, weight sharing and spatial pooling.
The input of a CNN is processed patch-wise by a number of learned convolu-
tions.

With the help of these convolutions various filter techniques can be applied - e.g.
blurring, edge or corner detection. Discrete convolutions are calculated by shifting
a filter mask over the input image and calculating the sum of products. The result
is written to the current center of the mask. These filter masks span the so-called
local receptive fields. Intuitively they define the image crops that a neuron actually
"see". In terms of neural networks the entries of the filter masks correspond to the
weights of the neurons and the filter size defines the connectivity between neurons of
subsequent layers.
Since many filters are applied several feature maps are obtained. All neurons of a
feature map share the same weight matrix. This property is called weight sharing.

11

2 Background and Related Work

Figure 2.4: Visualization of four exemplary filter responses taken from the third
convolutional layer of a CNN. Each filter responds differently to the input. For
example, some filters are mainly sensitive to certain orientated structures.

Weight sharing contributes to the property of shift invariance, since the same convolu-
tions are applied to the entire input image. At the same time weight sharing reduces
the amount of free parameters dramatically. This makes the net much easier to train
and has a strong regularization effect.

The learned filters expose different kind of visual features. Investigations by different
researchers have shown that the early layers typically capture very simple features,
similar to gabor filters and color patches [14] [15]. These features are very general
and therefore apply to many use-cases. In contrast the features of higher layers are
more abstract and reflect the gist of the learned classes. Exemplary filter responses of
an early convolutional layer are shown in figure 2.4.

Figure 2.5: This example demonstrates the effect of max and average pooling.

12

2 Background and Related Work

Another important component of CNNs are pooling layers. Typically the data is
sub-sequentially downsampled by combining spatial pools to a single value. Pooling
reduces the feature space and grant a small amount of translational invariance. This
is due to the fact that neurons within a region are mapped onto a single neuron.
Frequently used pooling operations are max and average-pooling (see figure 2.5). A
more recent method is stochastic pooling [16], which serves as an regularizer similar
to dropout.

So far the feature maps cover a two-dimensional space. For high-level reasoning,
such as classifying an image, a one-dimensional representation is needed. This
can be achieved by a fully connected layer, which connects every single neuron
to all neurons of the previous layer. Thus, fully connected layers aren’t spatially
located anymore. The one-dimensional output, is suitable for a traditional multi-layer
perceptron classifier (compare to 2.2.1).

CNNs have shown state of the art performance for image classification [4] [5]. Many
models are shared within the researcher community, which makes it possible to follow
up and adopt the networks to other classification problems. This process is called
"finetuning". Initializing from pretrained weights works well for many cases. Even a
model trained on a very distant task is often a better starting point than initializing
from random numbers (like "xavier" [12] or "msra" initialization [13]). One reason for
this is that features of early layers are in fact very general. Yosinksi et al. investigated
on the question of transferability [17]. Deep Learning Frameworks such as Caffe (see
section 3.2) facilitate the transferal of learned weights.

After the great success of CNNs for image classification, the natural next step was
to apply CNNs to local tasks, such as bounding box detection [18] [19] [20], local
correspondence [21] or semantic segmentation [22] [18] [19] [20].
Even though the results for semantic segmentation tasks yield new record accuracies
on various datasets, the methodologies had some major drawbacks. A common
approach was to identify clusters in the image, which may hold the desired objects
("region proposals"). All clusters are then classified independently. The results are
then merged to obtain a segmentation mask. This approach requires extensive pre-
and post-processing, making it unsuitable for end-to-end training and includes a
considerable overhead. In addition, the clustering result is likely to be suboptimal. A
fully visible object may be divided into several regions.
Therefore it was a huge improvement, when Long et al. developed a new net architec-
ture for semantic segmentation namely "Fully Convolutional Networks" (FCN) [23].

13

2 Background and Related Work

The following section will describe the differences and how a conventional CNN can
be converted into a Fully Convolutional Network.

2.2.3 Fully Convolutional Neural Networks

Figure 2.6: A Fully Convolutional Network (FCN) processes the entire image
to make pixelwise predictions of the same size as the input image. The network
is trained end-to-end by backpropagation and a pixel-wise loss. This requires
dense ground truths for supervised training.

In 2014 Jonathan Long, Evan Shelhamer and Trevor Darrell published the paper "Fully
Convolutional Networks for Semantic Segmentation" [23]. They presented a new
net archiecture for pixel-wise prediction. There are several advantages compared to
previous works. A FCN processes whole-images and produces dense predictions in
the form of probability maps. The training can be applied in an end-to-end manner.
Required are densely labeled images for supervision.
Another advantage is the ability to re-interpret existing classification nets as a FCN.
Therefore a FCN can benefit from pre-trained CNN models.
In order to convert a CNN into a FCN one has to replace the inner products (fully con-
nected layer) by convolutions with a kernel size of 1x1 (see figure 2.7).

While the fully connected layer of an image classification net completely discards
spatial information and delivers only one feature vector for the entire image, the
fully convolutional layer produces a feature vector for every pixel. Based on this
feature map a pixel-wise classification can be performed. This yields a probability
map for each class. To restore the original image dimensions this map is upsampled
by so-called deconvolutions. Depending on the weights, a deconvolution can serve
as a bilinear interpolation.

14

2 Background and Related Work

Figure 2.7: Classification at image-level versus pixel-level - To retain spatial
information one can "convolutionalize" a network by replacing fully connected
layers by convolutions.

While pooling improves classification accuracy, it partially neglects spatial informa-
tion. This is a drawback as it limits the spatial accuracy of the segmentation. The
VGG16- and Alex-net for example include 5 pooling layers of stride 2 [5][4]. In total
this results in downsampling by factor 32 (25). In general this leads to coarse segmen-
tation maps. Very small objects aren’t even considered at all.
To solve this issue they use a so-called "skip" architecture (see figure 2.8). By fusing
predictions of different strides they are able to refine the segmentation maps. In
addition to the classification based on the 32-stride feature map, they do the same
for the outputs of earlier pooling layers and fuse the classification scores by taking
the element-wise sum. Of course such an element-wise operation affords inputs
of the same size. Thus, the smaller prediction maps must be interpolated accord-
ingly.

15

2 Background and Related Work

Figure 2.8: This figure illustrates the "skip" architecture developed by Long
et al.. To keep the net-representation compact only pooling and classification
layers are shown. All intermediate convolution layers are omitted. The coarsest
prediction is based on pool5 only (solid line) and is called FCN-32s. The FCN-
16s version (dashed line) first upsamples stride 32 predictions by a factor of 2
and then combine the output with the predictions of pool4. The FCN-8s variant
(dotted line) combines predictions of stride 32, 16 and 8.

This way they obtained new state-of-the-art results on several data-sets.
However, this method left enough space for improving the spatial accuracy.
Noh et al. achieve finer predictions by learning a deconvolution network [24]. The
general idea is to extend a convolutional network by its mirrored counterpart. By
learning the inverse operations (pooling vs. unpooling, convolution vs. deconvolu-
tion) it’s possible to produce a finer segmentation. On the other hand, this approach
doubles the number of parameters to be learned. Another way is to refine the segmen-
tations of a FCN by a employing a graphical model. I will describe such an approach
in the following section.

2.3 Conditional Random Fields

In many cases the class instances are somehow related to each other. In such cases it’s
possible to model the dependencies in order to incorporate them into the classification
process. Such a structured prediction is required in many different fields, for example
in Natural Language Processing or Computer Vision.
Conditional Random Fields are designed exactly for this purpose. It’s a discriminative
model, which means that it directly describes how to assign a label ŷ ∈ y1, ..., yL when
a feature vector x is given - i.e. the conditional probability P(ŷ∣x) [25]. A generative
model describes the reverse process, i.e. rules for generating a feature vector x, when
a label y is given. Known relationships between observations can be expressed in a
graph structure. Each node represents an instance yi associated with an observation
fi and the connections between nodes represent the relation of those instances.

16

2 Background and Related Work

Image segmentation is a vivid example for structured prediction. In most cases a
reliable classification is only possible if the local neighborhood is considered.
A FCN takes this already into account. The classification is based on features detected
within the local receptive fields. However, as already mentioned, the spatial resolution
is poor.
A CRF can significantly improve this drawback. In the case of semantic segmentation
it’s helpful to encourage local consistency, i.e. it is very likely for neighboring pixels
to share the same object class. On the other hand the appearance (e.g. color) shouldn’t
differ too much. These inter-relations can be modeled by an undirected graph. By
enforcing the spatial and appearance constraints a coarse segmentation map can be
refined.
In general the graph structure can be arbitrary shaped. In the following the description
focuses on the case where each node is connected with every other node. A CRF based
on such a graph is called fully connected CRF. On the one hand a fully connected
CRF is capable to represent long-range dependencies, on the other hand the model is
very complex. For a long time this made it impractical for real-world applications.
One possible approximation method for fast inference was developed by Philipp
Krähenbühl and Vladlen Koltun [26].

For the purpose of image segmentation, one can define an energy function conditioned
on the image I. The final goal is to minimize this energy function E in order to get the
most likely segmentation result in terms of the defined model. E(x∣I) consists of unary
and pairwise potentials conditioned on the input image I:

E(ŷ∣I) = ∑
i

U(ŷi)

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
unaries

+ ∑
i<j

ψp(ŷi, ŷj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pairwise components

(2.10)

where:

I is the input image

ŷi and ŷj are the assigned classes for pixels i and j

The unaries can be obtained for example by the FCN output and is the negative log of
the likelihood of assigning a label to a pixel i (thus the loss). In general the potentials
can be arbitrarily formed. But [26] restrict the pairwise potentials to linear combina-
tions of Gaussian distributions - i.e. Gaussian mixtures.

17

2 Background and Related Work

The actual pairwise potentials for pixels i and j (equation 2.11) are defined by the
product of a label compatibility function µ(ŷi, ŷj) and a two-kernel potential k(fi, f j)
(Gaussian mixture) [26].

ψp(ŷi, ŷj) = µ(ŷi, ŷj)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

label
compatibility

k(fi, f j)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

two-kernel
potential

(2.11)

where:

fi and f j are feature vectors of pixels i and j

ŷi and ŷj are the class predictions for pixels i and j

The compatibility function µ(ŷi, ŷj) is represented by a symmetric matrix. This func-
tion describes the fact that some labels are more likely to coexist. For example, it’s
likely that labels of "sky" and "plane" are close to each other, whereas it’s unlikely for
the labels "sky" and "car". The entries of the matrix are learned during training.
The actual two-kernel potentials k(fi, f j) (shown in equation 2.12) consist of an ap-
pearance and a smoothness kernel. Here, appearance is described by a color vector
c. The appearance kernel underlies the intuition that nearby pixels of similar color
are likely to share the same class. The smoothness kernel suppresses small isolated
regions.

k(fi, f j) = w(1) exp
⎛
⎝
−
∣pi − pj∣2

2θ2
α

−
∣ci − cj∣2

2θ2
β

⎞
⎠

´¹¹¸¹¹¶
appearance kernel

+w(2) exp(−
∣pi − pj∣2

2θ2
γ

)

´¹¹¹¸¹¹¹¶
smoothness kernel

(2.12)

where:

fi and f j are feature vectors of pixels i and j

p is the position vector p = (x, y)T

c is the color vector e.g. c = (r, g, b)T

θ2
α, θ2

β, θ2
γ are parameters to control the variance of the underlying Gaussians

The filter operation can be controlled by the hyperparameters θ2
α, θ2

β and θ2
γ. They

describe the variance of the underlying Gaussian distributions. For optimization the
authors were using a simple grid search.

18

2 Background and Related Work

In summary one can say that the pairwise potential describes the cost of assigning
the labels ŷi and ŷj to a pixel pair i and j. The minimization of the energy function
E(ŷ∣I) yields the most likely label composition for a given image.
This optimization problem is actually solved by a so-called iterative meanfiled ap-
proximation [26]. The key idea of a meanfield approximation is to express the
exact distribution P(X) by a simpler factored distribution Q(X). Assuming that
each factor Qi(Xi) is independent, Q(X) can be expressed by the product of all
factors:

Q(X) =∏
i

Qi(Xi) (2.13)

Each meanfield iteration in a fully connected CRF performs 3 essential steps. A mes-
sage passing step, a compatibility transform and a local update.

1. Message passing: The pairwise potentials are calculated:

2. Compatibility transform: The compatibility transform µ(ŷi, ŷj) is applied.

3. Local update: In this step Qi(Xi) is updated by combining the unaries and
pairwise potentials.

These explanations should provide a high-level understanding of the algorithm.
Implementation details can be found in [26]. Moreover, the meanfield approximation
is discussed in the next section (see section 2.3).

Since all nodes are connected with each other, which implies that the kernels spans
over the entire image, the filtering for obtaining the pairwise potentials (message
passing) is a computational bottleneck. Classical filtering with a filter mask would
require to evaluate N times a sum over all N variables. Thus, the naive approach has a
quadratic complexity in terms of the number of variables.

19

2 Background and Related Work

Figure 2.9: With the help of the permutohedral lattice high-dimensional Gaus-
sian filtering can be approximately performed in three steps: (1) splatting the
instances onto vertices of the permutohedral lattice; (2) apply a one-dimensional
(discrete) convolution along each axis; (3) interpolate (slice) the results to the
original positions.

One possible way for approximate filtering of high-dimensional input, is based on a
data structure called permutohedral lattice [27]. The permutohedral lattice models
uniform structures. Figure 2.9 shows the permutohedral lattice and the required steps
for applying a high-dimensional Gaussian filter. This way the inference time became
practical (e.g. 0.2 seconds compared to 36 hrs). The work [26] also demonstrates
improvements in labeling and segmentation accuracy.

On the coupling of FCN and CRF

Figure 2.10: The coupling of a FCN and CRF can be used to benefit from the
strengths of both models. A FCN provides a coarse, but robust segmentation.
The CRF is then used for refining the segmentation accuracy.

Chen et al. were the first who combined FCNs and fully connected CRFs [28]. The
work shows how to consolidate the strengths of both models. In this way the coarse
FCN results are refined by a fully connected CRF, as described before. They employ
the implementation of Krähenbühl and Koltun [26], together with a FCN as described
by Long et. al [21]. The combination of FCN and CRF led to new state-of-the-art on

20

2 Background and Related Work

the PASCAL VOC-2012 image segmentation task. However the authors point out
further opportunities by learning both models in an end-to-end fashion.
In 2015 Zheng et al. suggested a CRF implementation in the form of a Recurrent
Neural Network (RNN) [29]. In contrast to feed-forward neural networks a RNN has
connections back to earlier layers [30].

Figure 2.11: A general overview of the CRF-RNN network. Iteratively the
energy function, defined by the unary and pairwise potentials, is minimized
by a meanfield approximation. The termination criterion is a fixed number of
iterations T.

The basic idea of Zheng et al. was to implement an iterative meanfield approximation
as a stack of CNN layers. In the following this method is called CRF-RNN.
As input serves the given color image I and the previously computed FCN unaries U
(see figure 2.11). A copy of the unaries is normalized by a softmax operation in order
to obtain H1. These three ingredients I, U and H1 are then fed into the meanfield
iteration. While I and U are preserved, H1 is updated before the next iteration is
started. In total T number of iterations are performed (Zheng et al. use T = 10 for
inference). Each meanfield iteration consists of 5 steps:

Figure 2.12: Subsequent steps of a meanfield iteration. One interation can be
interpreted as a sequence of common CNN operations [29].

21

2 Background and Related Work

1. Message passing: The components of the two-kernel potential (appearance and
smoothness; see equation 2.12) are obtained by high-dimensional filtering as
illustrated in figure 2.9. The coefficients of the spatial and bilateral filter are
based on the pixel locations and the RGB values.

2. Weighting filter outputs: A weighted sum combines the outputs of the previous
step (compare to equation 2.12). This can be implemented as a convolution with
1x1 filter size, two input channels (the output of appearance and smoothness
kernel) and one output channel.
Since the relevance of color and position differs for different classes, the weight-
ing is class-dependent. The weights are learned during backpropagation.

3. Compatibility transform: The compatibility transform is another class-dependent
operation which is learned during backpropagation. This operation can again
be viewed as a classical convolution (1x1 filter size). The compatibility function
µ(ŷi, ŷj) is part of the two-kernel potential k(fi, f j) and is described in equation
2.12.

4. Local update (unary addition): In this step the unary and pairwise potentials
are added (compare to equation 2.10).

5. Normalizing: Finally the refined potentials are again normalized by a softmax
function. The output may serve as an input for the next iteration (if iteration
count is ≤ T).

In order to learn the CRF parameters by backpropagation all steps have to be dif-
ferentiable. This way the error differentials can be passed backwards for parameter
adaption.
The CRF-RNN implementation of [29] integrates into the famous deep learning frame-
work Caffe. This way a given FCN model was jointly finetuned with a CRF. This yield
a new Pascal VOC 2012 record for the segmentation task.

Shortly after the publication of Zheng et al. a very similar work has been published
[31]. Their implementation mainly differs in the feature extraction part as both fine-
tune from different models.
A somehow different approach was presented by Liu et al.[32]. Due to further opti-
mizations, they even outperform the results of Zheng et al.. They carefully designed
the unary and smoothness terms and conducted several experiments to find an opti-
mal configuration [32].

22

2 Background and Related Work

Other subsequent works deal for example with the efficiency of the CRF learning pro-
cess and the incorporation of further contextual informations [33][34].

2.4 Incorporating Depth into CNNs

A general problem in computer vision is that images provide only incomplete infor-
mation about the captured scene. Depending on the given conditions an image may
also be a misleading representation.
Imagine a scene illuminated by diffuse light in which objects are indeed shaped
differently, but have the same opaque material and color.
What do we see? The contours of each object disappear and are no longer distin-
guishable. In such a scenario, it’s impossible to classify or segment objects based on
the visual appearance. Of course, this is an corner case, but there are many nuances
in between. Depth has some uncontroversial advantages over conventional images.
It provides another piece of information - the three-dimensional shape of an object.
Many objects are distinguished only by their shape and not by their color or texture.
Thus it is a meaningful complement and enables hopefully a more robust basis for
classifications.
However the technical implementation of a depth sensor is crucial for the application.
In the case described above a Time of Flight (such as the Kinect v2 used in this work
3.1) would be suitable. Whereas a stereo camera for depth estimation would be use-
less, as it depends on the availability of visual features. In addition there are further
technical limitations such as resolution, recording rate, field of view and depth range.
Another question is how to use depth in a CNN setting, which was primarily designed
for two-dimensional input data? The three dimensional space must be reduced to two
dimensions. But what is an appropriate representation?

2.4.1 Depth Encoding

As most CNNs are designed for RGB-input, a three-channel representation becomes
very handy. That way developers can leverage from standard models pre-trained
on RGB-images. This becomes important since there may be a lack of (very) large
and suitable depth data sets. But large training sets are required for a training from
scratch.
The fact that depth and color represent two different things, is actually not a big

23

2 Background and Related Work

problem. Just like a conventional color image a depth encoded image shows different
shapes and colors (see figure 2.13). Therefore it’s practicable to initialize a depth-based
network from a color-based network. At least features of early layers are universally
applicable.
There are several possible encodings:

1. One simple solution for the problem is to use the distance between the camera
and the objects (depth image). The measurement considers the z component
perpendicular to the camera sensor. That means the other two components x
and y (perpendicular to the optical axis) are discarded. In order to fulfill the
input requirements, the resulting grayscale image is then replicated over all
three channels.

2. For a better utilization of the given input space, the gray values could also be
expanded over all channels by using pseudo colors. Eitel et al. employ for
example a jet colormap [35].

3. A more extensive method includes the estimation of surface normals. Each
dimension of the surface normal is represented by a separate channel.

4. Gupta et al. propose an even more involved strategy [19]. They encode depth
into height over ground, horizontal disparity and angle w.r.t. gravity. According
to the first character of each component this method is called HHA-encoding.
The A-component requires again the estimation of surface normals.

Since methods 3 and 4 require the estimation of surface normals they are computa-
tionally more expensive. Gupta et al. defend this effort by presenting impressive
results. Furthermore they argue that it’s unlikely that a CNN will learn such a rep-
resentation on its own. Compared to 3 and 4 methods 1 and 2 are computationally
inexpensive. Eitel et al. report good results even compared with the more sophis-
ticated approaches 3 and 4. However, one potential reason for this result is that
the height component was not fully exploited. They use a data-set, which includes
only table-top images. According to the authors all objects had the same height over
ground. Hence, the height component became useless for this test case. Possibly this
could have been improved. As positions below the table and far beyond are needless
for this application one could consider that in the encoding. This could be done by
mapping a smaller range starting from the tabletop onto the image domain (e.g. [0,
255]).

24

2 Background and Related Work

Figure 2.13: Exemplary HHA encoded image. Black represents missing depth
values. In order to reconstruct these missing values an inpainting technique
can be applied.

Depending on the method and the properties of the depth camera, as well as the
perceived scene, there occur more or less pixels with missing depth information.
With the help of the local neighborhood these holes can be filled with meaningful
values. For example, small holes can be easily closed, with a median filter. Larger
holes require more sophisticated methods. There exist several inpainting variants for
this purpose. For time critical applications, such as it is here, an efficient solution is
required. Most inpainting methods borrow small pieces from the original image to
fill the missing values.

Figure 2.14: The Navier-Stokes method for inpainting propagates the intensity
at boundaries along the so-called isophote lines. The direction of an isophote
points towards the smallest intensity change.

This work deploys the so called Navier-Stokes method [36]. The method processes
each color channel separately. The main idea of the Navier-Stokes method is to model
image intensity in terms of fluid dynamics. The intensity flows from the boundary
along the so-called isophotes. Isophotes are lines of equal gray levels. By continually
propagating gray values along the isophotes it’s possible to contract the hole. In
section 4.1 I will describe how the method is used within the application and show a
method for further speed up.

25

2 Background and Related Work

2.4.2 Multimodal Deep Learning

This section discusses different techniques for fusing multimodal inputs. While these
techniques are generally applicable, the focus of this work is on color and depth
input.

The previous chapter dealt with pre-processing steps to make depth data compliant
for the use in CNNs. Finally different ways to fuse color and depth information
are demonstrated. Basically there are two strategies: Late and early fusion [37].
In case of late fusion both modalities are processed and classified separately and
finally fused typically by a weighted sum. Whereas only one classifier is learned in
case of the early fusion scheme. Thus, the fusion already takes place in the feature
space.

Figure 2.15: The two-stream convolutional network as it was used by Long et.
al [21]. It follows a "late fusion" approach - the outputs of two classifiers are
fused by a sum operation.

Long et al. chose the "late fusion" approach [23]. They evaluated teir two-stream FCN-
architecture on the "NYU Depth Dataset" [38]. In a previous step they encode depth
into a HHA-image as described before. Both inputs, namely RGB and HHA, are pro-
cessed by two separate streams. Two independent classifiers are learned on top of each
stream. The classification scores are merged by a pixelwise sum [23]. Although both
streams are connected and learned jointly the strict separation until classification stage
limits the freedom for co-adaptions. However, this is not always disadvantageous [39].

26

2 Background and Related Work

On the other hand this approach includes slightly more parameters and arithmetic
operations (e.g. due to separate deconvolutions).

In contrast Eitel et al. follow the "early fusion" approach. Both streams are merged
already in feature space. The "fc7" features (see figure 2.16) are concatenated, so that
the following classification layer can access both feature sets simultaneously. This way
the classifier can learn connections between both modes.

Figure 2.16: The two-stream convolutional network proposed by [35]. The
feature-maps are fused by a learned layer. Classification is based on the merged
output of fc1-fus.

In general it’s not clear which strategy is the best. This is highly dependent on the
individual case. Classification based on very dissimilar feature spaces usually works
best with the "late fusion" approach [40]. Whereas early fusion can be promising for
similar inputs (like RGB-D data). In practice it’s therefore reasonable to test both
variants.

27

3 Technical Approach

This chapter discusses the components, used for the technical implementation of this
work.
I describe the main building blocks, consisting of hard- and software, required for
the development and implementation of the system. Apart from describing them I
emphasize the advantages, which have led me to the specific selection.

3.1 Kinect v2

Since its launch in 2010 the Kinect camera has become a popular tool for researchers
in the field of computer vision and robotics [41]. The Kinect is an affordable and
easy-to-use RGB-D camera. Color is perceived by a conventional RGB sensor. Depth
is determined by an active measurement process. For this purpose the Kinect has a
second image sensor and a light emitter.

Figure 3.1: The second generation Kinect uses a Time-of-Light sensor for 3D
depth sensing.

In this work the second generation of the Kinect is used. In contrast to the first version,
which uses structured light for depth estimation, a time-of-flight (ToF) sensor is used.
The main principle of ToF cameras is comparable to that of an echolot. A sensor
receives light, which was previously emitted and then reflected by objects of the

28

3 Technical Approach

surrounding. The time between sending and receiving is directly correlated to the
covered distance. The speed of light, however, is many times greater than that of
sound. Light needs, for example, only about 33 picoseconds to travel a distance
of one centimeter. Hence, the technical implementation of time measurement is
difficult.

Figure 3.2: Illustration of the ToF principle (continuous wave) - The basic
idea is to measure the time difference between emission time and received
time. By using modulated light it’s possible to determine the time difference by
measuring the phase shift of in- and outgoing light waves. Since the amplitude
repeats periodically, the result is ambiguous for phase shift greater 180 degrees.
This fact limits the depth range.

There are direct and indirect ways to measure the time difference. The Kinect v2
uses the later. By using amplitude modulated infrared light it’s possible to measure
the phase shift between in- and outgoing light. The phase shift is proportional
to the distance. By knowing the speed of light c, the modulation frequency fm

and the measured phase shift φ one can determine the distance d within a certain
range (equation 3.1). The range is limited to the half of the wavelength c/(2 fm),
because the phase shift is only unambiguous in the interval between 0 and 180
degrees.

d(φ) = c
4π fm

φ (3.1)

where:

c = 299792458 [m/s] (speed of light)

fm [Hz] is the modulation frequency

φ is the phase shift

According to the formula c/(2 fm), one might conclude that a small modulation
frequency is ideal for obtaining a large depth range. Unfortunately, the standard
deviation of the noise in the phase shift measurements is inversely proportional to
the modulation frequency [42]. Hence, a suitable balance between depth range and
accuracy needs to be found. In order to reduce the measurement noise and increase

29

3 Technical Approach

the range in which φ is unambigous, the Kinect v2 combines the results of 3 different
frequencies - namely 16, 80 and 120 MHz [43].
Other difficulties, arise by optical effects, inaccuracies in measurement and back-
ground illumination. Further technical details can be found in [42] and [44].
The following table compares the most import specifications of both Kinect cameras:
As shown in table 3.1 the resolution of Kinect v2 was increased for both depth and

Table 3.1: Kinect v1 vs. v2 - specs

Kinect v1 Kinect v2

RGB-resolution [px] 640x480 @ 30fps 1920x1080 @ 30 fps
D-resolution [px] 320x240 512x424
depth range [m] 0.4 - 4.5 0.5 - 5
method (D) - structured light ToF
horiz. field of view [deg] 57 70
vert. field of view [deg] 43 60
USB standard - 2.0 3.0

RGB-sensor. Moreover, the field of view is wider and the recent USB standard is used,
which allows higher transfer rates.

3.2 Caffe - A Deep Learning Framework

Caffe is recently one of the most popular deep learning frameworks. Other common
libraries are Theano [45], Torch [46] and recently also Tensorflow [47]. Mainly for
practical reasons I’ve decided to use Caffe. This work is mainly based on two preced-
ing works [23] [29] and both implementations are dependent on Caffe.
The Caffe project was started by Yangqing Jia and the Berkeley "Vision and Learning"
team [48]. The code is entirely open source and has an active community of devel-
opers. At the time of writing this thesis (Dec. 2015) the official repository on github
has more than 4000 forks! Even big companies like NVIDIA are involved. NVIDIA
distribute their own caffe-version [49] and a graphical interface called DIGITS [50].
With the help of cuDNN, a high performance library, developers can further boost
the training of neural networks on GPUs [51].
Caffe addresses both efficiency and simplicity. The code is written in C++ and CUDA.

30

3 Technical Approach

Furthermore there exist MATLAB, Python and command line interfaces. Net defini-
tions are defined by plain text schema, which avoids hard coding and provides more
flexibility.
Many well-known models are freely available and distributed throughout the "Model
Zoo" [52]. Another advantage of Caffe is that developers can easily switch between
GPU and CPU execution. Whereas the costly training is usually performed on high-
performance GPU’s, developers have the choice to deploy the neural network on
more light-weight devices such as embedded systems.
Due to the active community Caffe is constantly evolving. The latest features are
usually found in one of the many fork repositories. Some of them are included (after
extensive testing) into the official version. Since this work requires some of the latest
features I’ve not worked with the official master branch.

Used Hardware

All models presented within this work are trained on a single graphical process-
ing unit (GPU) with 12 GB memory. Where available, the cuDNN implementa-
tions were used (e.g. pooling, ReLU, softmax). These are especially optimized for
GPU usage. More details about the technical specifications can be found in table
3.2.

Table 3.2: Tesla K-80 board - specification [53]

Specifications Tesla K-80 board

Number of GPUs: 2 x Tesla GK210B
Core clocks: Base clock: 560 MHz

Boost clocks: 562–875 MHz
Memory clock: 2.5 GHz
Memory size: 12 GB (per GPU)
Memory bandwidth: 240GB/s (per GPU)

31

3 Technical Approach

Caffe with Spearmint

Spearmint is a software package to perform optimization tasks. It is designed to
find an optimal set of hyperparameters, while considering the evaluation costs. For
example, the amount of hidden units of a neural network has a considerable impact
on the evaluation time.
Spearmint with Caffe brings this functionality to Caffe. It enables a comfortable
way to optimize any kind of hyperparameters - such as parameters required for net
definition and solvers. Instead of specifying a fixed value for a parameter, a certain
range can be specified. Spearmint searches then for the optimal values in those ranges
by using Bayesian optimization methods [54].

3.3 Robot Operating System (ROS)

The Robot Operating System (ROS) is an open-source framework for developing
robotic software [55]. The design is following the philosophy and beliefs of an easy-to-
use robot framework. The developer postulated the following requirements:

• peer-to-peer connections

• tool-based

• multiple languages support

• modular

• free and Open-Source

The basic ingredients for a ROS application are nodes, messages, topics and services.
A node is a software module typically arranged within a graph of peer-to-peer com-
munications. The communication between nodes is based on interchanging messages.
A message is published to a distinct topic and can be consumed by multiple nodes.
All messages are shared via immutable, reference-counted smart pointers. This allows
safe access from multiple processes, prevents unnecessary copy operations and is
developer-friendly, since all pointers are automatically deleted.
Furthermore ROS provides filter algorithms for synchronizing multiple messages
based on user-defined policies. For example one can either force equal time stamps
for synchronization or use a more relaxed condition - e.g. synchronize messages
which are chronologically close to each other.

32

3 Technical Approach

In contrast to this publish-subscribe models a service follows a request-response
scheme and is therefore more appropriate for synchronous transactions. The interface
of a service requires a fixed request and response message-type.

Figure 3.3: Exemplary ROS graph for semantic segmentation from RGB-D
data. The nodes, represented by oval shapes, listen for certain message types
("clouds"). Some of them require more than one input. Each node publishes
its outputs independently. Therefore it’s important to synchronize all input
messages in a suitable way.

An possible communication pipeline for the segmentation task is shown in image
3.3. The RGB-D sensor provides color images and depth information. A "bridge"
component publishes the images and pointclouds to the ROS ecosystem. ROS nodes
can then register for these message events. For example, the "Depth Encoder" lis-
tens for pointclouds. The results are then published again and received by the
"Pixelwise Classification" node. Details about the actual implementation are not
relevant for the usage of the interface. In my application, this node wraps a FCN
based on Caffe. The segmentation result can be visualized or used for several other
tasks.

In addition to the modular software architecture and the communication processes
ROS provides some handy tools for various purposes. For this work I’ve used for
example a tool called "rviz". Rviz is a visualization tool for 3D and 2D data. One can
simply register for certain topics. The received contents e.g. pointclouds are then
visualized continually.
Very useful for developing ROS applications is the opportunity to record and playback

33

3 Technical Approach

certain messages. The messages are stored in so-called ros-bags. In this way one can
simulate a live-system, while developing components.

ROS intends not to offer an all-in-all solution, instead it is a very general framework for
robotic applications. The diversity of robot applications requires an easy expandability.
One can expand ROS through the integration of other libraries. For example many
applications have to deal with 2D and 3D sensor data. Therefore, ROS supports an
easy integration of OpenCV and pcl functionalities. I will introduce these libraries in
the following.

3.4 Point Cloud Library (PCL)

The Point Cloud Library is a famous Open Source project, which includes data-
structures and algorithms mainly for the processing of 3D data. It is released under
the BSD license and is freely available for commercial and educational usage [56][57].
PCL can be run on different platforms such as Linux, MacOS, Windows, Android and
iOS.
The high dimensionality of the data requires specific and optimized solutions to
enable efficient processing. PCL provides several implementations of state-of-the-art
algorithms, capable for filtering, model fitting, feature extraction, reconstruction,
segmentation and registration. As shown in figure 3.4 the code is organized in smaller,
independent libraries.

Figure 3.4: The Point Cloud Library consists of small, independent C++ li-
braries.

Similar to ROS, PCL relies on other open-source libraries, such as Eigen and Boost.
Eigen provides efficient linear algebra operation, whereas Boost shared pointers are
used to pass data around without the need of expensive re-copying. In addition,
many operations can be executed in parallel on multiple cores.

34

3 Technical Approach

In this work, I’ve mainly used the data structures and special algorithms for estimating
surface normals and plane fitting.

3.5 Open Source Computer Vision (OpenCV)

OpenCV is an open-source library for computer vision applications [58][59]. By
providing efficient building blocks capable for real-time applications, it has been
extensively used within various types of applications.
The roots of the OpenCV library come from an Intel Research Project launched in
1999. The functionalities have been developed in C/C++. Meanwhile OpenCV is
published in version 3.1. In addition to many image processing and computer vision
algorithms, more and more machine learning algorithms have been added.
Recent algorithms are now developed in the C++ interface. There exist bindings in
Python, Java and MATLAB, which certainly contributed to the extensive usage in
research and development. OpenCV is cross-platform, which means that it can be
employed on most desktop and mobile platforms.
OpenCV supports hardware-dependent execution for acceleration. For example some
operations can be performed on graphical processing units (GPU).
The wealth of functionality is not that relevant for this work. OpenCV was mainly
used to organize and display images, but also for recovering missing image parts
(inpainting).

3.6 Image Annotation Tool

Supervised learning requires an adequate amount of annotated samples. Since the
aim of this work was to perform classification at pixel level, every single pixel has
to be labeled. Compared to annotating at image or object level, this is particularly
time-consuming.
To facilitate this work I’ve used a browser-based tool, which is freely available at
github [60]. The tool is implemented in plain Javascript. Users can create segmenta-
tion maps by clicking onto highlighted regions.
All settings, e.g. class definitions and image-paths, are stored in a JSON file. Classes
are mapped to integer-labels organized from 0 to number classes−1. This is already
the same format as Caffe expects.

35

3 Technical Approach

The regions are determined by a clustering algorithm called SLIC [61]. Cluster sizes
are adjustable via the graphical interface. Furthermore the tool provides several
visualization features and an image export functionality.

Figure 3.5: Screenshot of the browser-based annotation tool. The annotations
are visualized by a colored transparent overlay. Hovered regions are highlighted
accordingly. Moreover users can select from various settings for controlling
appearance and tool properties.

The SLIC superpixels become very handy for fine details such as hairs. However,
especially for man-made objects with straight boundaries (e.g. palettes) a simple
polygon-tool is more suitable. Hence, I’ve extended the tool by this functionality.
In addition I’ve added keyboard shortcuts to accelerate the labeling process. My
extension was merged into the original repository [60].
Since the tool is browser-based it’s suitable deploy it for large scale projects, where
several workforces operate in parallel. Instead of exporting the image to a local disk,
the result could be saved on a central server.

36

4 Implementation and Results

Having constructed the theoretical and technical basis, I will now explain important
implementation details. In addition I present and discuss the achieved results. First
of all I give an overview about the general conditions. Which data was used? What
was challenging about the data? What special arrangements have been made?
Then I subsequently introduce working solutions and evaluate their performance
with regard to different metrics. In this way I built a basis for selecting the final net
architecture.
The starting point is the base net, which corresponds to the architecture presented
by Long et al. [23]. An important aspect of this work are possibilities to facilitate the
learning process. Instead of performing a stage-wise training, I was able to do this in
one pass (see section 4.4.1). This is either done by selectively "transplanting" weights
from an existing model or by introducing a normalization step.
After that I will highlight further important aspects. How is it possible to improve
the spatial accuracy? In particular I present the concrete use of the skip-architecture
(introduced in section 2.2.3) and a joined conditional random field (see section 2.3).
Then I elaborate on strategies for incorporating depth-information (see section 4.4.3).
Finally, the results of the preliminary tests are used to design an appropriate training
methodology and net architecture. In addition I demonstrate how to deploy the
network by embedding it into a robotic system. In this way other components can
leverage from the segmentation results. This feature enables a variety of future
applications or the improvement of existing ones, such as path planning or decision
making.

4.1 Data

The supervised training requires pixel-wise annotations per image. In addition, anno-
tations are needed for both validation- and test-set. I’ve defined object categories suit-
able for a range of potential applications within a warehouse environment. However,
the required categories depend on the exact use case. For instance, the localization of
the autonomous forklift, developed by the Bosch Start-Up, is based on artificial mark-
ers. These markers must be detected for this purpose. Therefore the "marker" class

37

4 Implementation and Results

was included into the class set. To my knowledge there aren’t any public-available
data sets which satisfy all the requirements:

• RGB-D images

• pixel-wise annotations

• warehouse environment

• object categories:

– groundplane

– pallet

– human

– forklift

– marker

– void/background

Therefore it was necessary to build a new image set. All images were recorded by a
Kinect v2 camera (see section 3.1) mounted on a trolley. In this way, an approximately
constant height above ground was ensured. This is important for the processing of
the depth-encoded image.
A tool developed by the ETH Zurich was used to record the pointclouds and RGB-
images in rosbags [62] [63]. Although this rosbags are not required to train and
test the model, it becomes useful to simulate a live-system, which is actually the
final objective of this work. A rosbag allows to publish recorded sequences on
demand, which gives perfect conditions for testing the final system. Every ROS
message includes a header which contains meta-data such as a timestamp. The
timestamp is important for the application, since it consumes two kind of input
types - namely pointclouds and images. These are provided by different sensors. In
general it is not guaranteed that both messages are published at the same rate and
times. Thus, the messages must be synchronized. Fortunately ROS provides this
functionality.

38

4 Implementation and Results

But before the actual deployment, the model has to be trained and tested offline on
plain images. First I’ve selected suitable samples, which are then pre-processed and
saved to disk. I’ve developed an interactive tool for this purpose. The tool iterates
through a rosbag, synchronizes the desired message types approximately by their
timestamps and displays the color images. On this basis the user can decide, which
samples are further processed (see HHA depth encoding 4.1) and stored. In this way
image pairs are obtained, which represent color and depth information.
Next, the data must be annotated. All images were labeled with the help of a browser-
based tool (see section 3.6). The resulting triplets of RGB-, HHA- and annotated
images are then used for training, validation and testing.

Dense labeling is very time consuming and makes it hard to build a huge dataset
with little manpower. I’ve searched for possibilities to extend my own database by
external images. As already mentioned there are no public RGB-D datasets that meet
the requirements. However, the chosen net architectures allows to (pre-)train depth-
and color-models separately. Hence, it’s possible to exploit the availability of large
RGB-datasets at least for the color-based model.
In addition to my own dataset I use parts of the Pascal VOC 2012 [64] and SUN
database [65]. To meet the requirements, those labels were mapped on the de-
fined label set. Moreover, only images showing at least on of the defined objects
(excl. void and groundplane) were included. Other images may (it’s a random-
ized selection!) serve as a background image for data-augmentation (see section
4.1).

Table 4.1: Number of RGB-D images in the randomly splitted
train-/val- and test- set.
The number of RGB images is shown in parenthesis.

train validation test

quantity 100 (1047) 20 30

The actual splitting of the available annotated images is shown in table 4.1. For the
sake of the model quality I’ve chosen very small sizes for the test- and validation set.
This is a crucial point for criticism. However, the construction of a larger data set was
impossible in the scope of this work. Therefore, the results must be interpreted with
caution. The presented results should be viewed as a rough indication.
As you can see in table 4.2 the number of samples (i.e. pixels) for each class are very
imbalanced. My experiments have shown that this leads to very biased results. The

39

4 Implementation and Results

Table 4.2: The pixel-wise class frequencies in percent [%]:

train validation test

groundplane 32.8 36.3 38.7
pallet 4.3 3.8 3.2
person 2.2 1.5 6.0
forklift 4.5 1.3 10.3
marker 0.9 1.6 0.2
void 55.3 55.7 41.7

model tends to focus on the dominating class - hence "groundplane" and "void". This
is primarily problematic for the initialization phase.
In general there are different strategies to counteract class imbalance. I will explain
my thoughts and attempts in section 4.1.

Depth Encoding (HHA)

As described in section 2.4.1 the pointclouds must be transformed into a meaningful
image representation. One way to do this is the so-called HHA encoding (see example
image in figure 4.1(b)).
My implementation loosely follows the HHA depth encoding scheme described by
Gupta et al. [19]. Their Matlab implementation expects depth images as input. Thus,
the 3D data is already encoded and must be decoded again. In contrast to them, I use
pointclouds as input.
Fortunately the pointclouds are in an "organized" format. This means the points are
stored in the same order as the image. Therefore the mapping between the pointcloud
and the image is known.
The depth encoder was implemented as a templated class in C++. A pointcloud is
expected as input. Besides the x,y,z coordinates this pointcloud must provide surface
normals for each point. This extra information is required for the "A" component.
Thus, the local surface must be estimated for each point, which requires the incorpo-
ration of the neighborhood. This makes it a potential bottleneck of the processing
pipeline. An efficient method makes use of integral-images [66]. An implementation
of this algorithm exists in the PCL library and was used in this work.
The "extract" method of the depth encoder returns a three channel image in PCL

40

4 Implementation and Results

format ("PCLimage"). The calculation of each component has been implemented as
follows:

• "height over ground" (H)
This component is calculable as a per-element-operation. For each point the
distance to the floor must be computed. For simplifications I’ve assumed a static
model of the groundplane. Such a plane can be described in its general form:

ax + by + cz + e = 0 (4.1)

where:

a, b, c and e are the model parameters

x, y, z indicate the coordinates of a 3D point

Computing the distance d between the plane and point (x0, y0, z0) is then
straightforward:

d = ax0 + by0 + cz0 + e√
a2 + b2 + c2

The assumption of a static plane is reasonable, since it’s described w.r.t. the
vehicles local frame and the surface is approximately flat. As long as the camera
pose remains fixed w.r.t. the vehicles local frame, the model remains also valid.
Minor errors caused by vibrations or small bumps were neglected.
A more sophisticated approach would include steady realignment by incorpo-
rating knowledge about the orientation (e.g. provided by an accelerometer).
Another approach would be to frequently re-estimate the plane.

In this work the groundplane was estimated only once at the beginning of each
sequence. This was possible since the camera was mounted at a fixed height.
The estimation process requires to manually select a region, which consists
of a part of the floor (in the image plane). However, this process can be fully
automated. For example, a detected marker on the ground can be used for
automatic field selection.
The selected region allows to extract the underlying subcloud. This selection is
a good starting point to fit a plane.
Robustness in the presence of outliers is assured by using a RANSAC-scheme
[67]. RANSAC is a non-deterministic algorithm for estimating model parame-
ters out of measured data. To determine the parameters, a random sample of
minimum size is drawn. In the case of a plane, exactly 3 points are needed to

41

4 Implementation and Results

determine a unique solution. It is then checked which points of the remaining
set support the model assumption. A point is considered as a valid supporter
if it’s described by the model within a certain tolerance range. This parameter
should be chosen depending on the expected noise. The resulting set of points
is the so-called "consensus set". This procedure is repeated until a predefined
termination criterion is reached (e.g. a maximum number of iterations). After
termination the largest consensus set is chosen for estimating the final model.
Finally the height values in range [0,5] meter were linearly mapped onto the
8bit domain. The decision for this certain range is based on the assumption that
the objects will occur only within the defined range. Ideally, the optimal range
should be determined experimentally.

• "horizontal disparity" (H)
Since a ToF camera is used and not a stereo-camera the term "disparity" might be
misleading. In fact a defined stereo rig is imitated. For the mapping from depth
to disparity one has to define the baseline B and the focal length f . Fulfilling
these prerequisites, the z-values (i.e. the point-wise distance to the sensor) can
be mapped by the given formula:

d = B ⋅ f
z

(4.2)

where:

B is the baseline between two cameras

f is the focal length

z is the depth value (along the optical axis)

Suitable values for B and f were determined empirically. In combination with a
linear mapping from [9, 60] to 8bit domain, I found 120 a suitable value for B ⋅ f .

• "angle" (A)
This value describes the enclosed angle α between the surface normal n⃗ and the
gravity vector g⃗. In this work, the gravity vector was assumed to be fixed. This
assumption is based on the fact that the camera system is mounted on a trolley,
which moves perpendicular to the normal of the groundplane. This surface
normal points approximately in the same direction as g⃗. The enclosed angle α

between n⃗ and g⃗ is obtained by equation 4.3.

42

4 Implementation and Results

α = arccos(n⃗ ⋅ g⃗
∣n⃗∣∣g⃗∣) (4.3)

g⃗ gravity vector (approx. the groundplane normal)

n⃗ surface normal

α enclosed angle i.e. orientation of the surface

(a) RGB (b) HHA

Figure 4.1: An exemplary image pair used for training - The left image shows
a conventional RGB image. Depth (right) is encoded into three stacked repre-
sentations (height, horizontal disparity, angle). Black pixels represent missing
values. These are filled by inpainting in the next processing step (see next
section).

Inpainting
Depth images usually include areas with missing values. There are several causes for
this phenomenon. In the case of a ToF camera, the emitted light is sometimes reflected
or absorbed. Moreover ToF cameras have a limited working range (described in
section 3.1).
In order to fill these holes, I’ve applied an inpainting-method. An efficient algorithm
is the Navier-Stokes method [36].

Figure 4.2: Scheme of an efficient inpainting pipeline. The computational
intensive inpainting algorithm is performed on a downsized version of the
image.

43

4 Implementation and Results

A further performance boost is achieved by down-sampling the input image before
the actual inpainting is applied. I have used a scaling factor of 0.25. Inpainting is
performed within a radius of 3 pixel. The resulting image is up-sampled again and
used to fill the holes of the original image. This way valid values of the original depth
image are kept untouched.

Data Augmentation

Deep Neural Networks are capable to represent complex models. The downside is
that complex models are more prone to overfitting. Because of that it’s necessary to
apply regularization techniques and train on a huge training set. Fortunately the
required amount of training data is significantly lower, when finetuning the model
from an existing one. However there is no general rule of thumb how many images
are actually needed. Many factors affect this question. For example, the similarity of
source and target task plays an important role [17].
In addition, previous works have shown that a good performing model can be fur-
ther improved by providing more training data. It’s therefore common to combine
different data sets to enlarge the training set. For example, Zheng et. al [29] use a com-
bination of Pascal VOC and Microsoft COCO dataset [68].

Furthermore, augmentation techniques can help to make the most of the available
annotations. By altering the samples the model can be trained towards a more general
solution. In this way the model becomes more robust and invariant. Of course, the
applied augmentation techniques must fit to the requirements of the system. For
autonomous vehicles one has to consider very different conditions since the point of
view and other conditions are constantly changing. In addition objects are moving
around and occlude each other. Therefore it makes sense to apply a broad range of
image transformations:

• mirroring

• scaling

• cropping

• rotations

• contrast/color "jitter"

44

4 Implementation and Results

These techniques are widely used. Furthermore, the database was augmented by
adding new content to the images.

• One way to do this is to combine different images. The annotations are useful
to selectively paste certain regions into other images.
Many images in PASCAL VOC 2012 contain no objects of my predefined classes.
Consequently, the entire image counts as part of the "void" class. I’ve used these
images to modify my own images by replacing regions marked as "void". Since
"void" can be anything, it’s important that the samples of "void" include a lot
of variance. Unfortunately, the recorded data set contains only three different
scenes. Consequently, the background often looks very similar. Therefore, this
technique is particularly useful.
Actually, the background image can come from a different context. The aim is
that the network learns how to distinguish between classes regardless of the
environment. An exemplary image can be seen in figure 4.3(b).
In addition I’ve used this "cut and paste" technique in order to randomly transfer
certain objects. Underrepresented classes were preferred - i.e such classes had a
higher probability of being chosen.

• As shown in table 4.2, the marker class is particularly underrepresented. I
have therefore developed an augmentation technique for this class. Since the
appearance of a marker follows a certain pattern, it’s possible to generate an
"artificial" marker. First, an outlined white box with a randomly chosen naming
(e.g. "Q63") was generated. Then a randomly chosen image transformation was
applied. This included scaling, rotation, perspective transform and brightness
or color adjustments. Finally, the resulting image was pasted into the target
image.

(a) marker (b) image merging

Figure 4.3: Besides standard augmentation techniques, such as mirroring or
rotations, I’ve also altered the image content itself. By generating markers (a) or
merging two images (b).

45

4 Implementation and Results

Class Balancing

Class imbalance is a prevalent hurdle for many machine learning applications. Sam-
pling real-world measurements often leads to imbalanced datasets. Per-pixel labeling
even promotes this issue, since different objects usually appear at different scales.
There is no general rule at which point class imbalance becomes problematic. Because
of that it’s sufficient to supervise the learning process. While training, I’ve periodically
checked the per-class performance (pixel accuracy). Doing so, it turned out that the
model neglected underrepresented classes. Especially crucial for the training success
is the initialization phase. In order to prevent this unwanted effect, I’ve tested two
kind of approaches.
First I’ve implemented a custom loss function E which accounts the class frequencies
of a training batch (see equation 4.4). Basically a multinomial logistic loss is used,
where each sample is weighted by the inverse class frequency fl. This way each class
(with label l) within a training batch of size N contributes equally.

E = − 1
N

N
∑
n=1

f −1
l ⋅ log(pn,l) (4.4)

where:

N is the number of samples (i.e. pixel in a batch)

p is the class probability of label l

fl is the frequency of label l occurring in a batch

An advantage of this approach is that all training samples can be retained. On the
other hand this rule is often too hard. A single pixel of one class may have the same
influence as thousands of pixels of another class.
The second approach compensates class imbalance by omitting training samples of
overrepresented classes. This was done by randomly setting labels to a "ignore" label.
The fraction of ignored labels has been manually set for each class. The setting was
approximately based on the class frequencies. Table 4.3 shows the class frequencies
after balancing:

46

4 Implementation and Results

Table 4.3: Class frequencies after balancing in percent [%]. The
original frequencies are shown in parenthesis.

train validation test

groundplane 24.9 (32.8) 36.3 38.7
pallet 15.7 (4.3) 3.8 3.2
forklift 8.4 (2.2) 1.5 6.0
human 16.2 (4.5) 1.3 10.3
marker 3.4 (0.9) 1.6 0.2
void 31.5 (55.3) 55.7 41.7

4.2 Evaluation

As already mentioned I’ve evaluated the final and interim results on a relatively small
test set. It’s therefore appropriate to interpret them carefully. This fact also applies to
the error metrics. There is no perfect metric to describe the semantic segmentation in
a comprehensive and accurate way. In the next section I’ll broach this in more detail.
I’ve developed a tool which helps to evaluate a specified model. By a pixel-wise
comparison of the segmentation result and the corresponding ground truth different
error metrics are calculated. It should be noted that the ground truth data, which was
created by a human, is erroneous as well. Finally, all measurements were saved to a
csv (comma-separated-values) file.

4.2.1 Metrics

This section discusses different possibilities to measure the segmentation accuracy. In
order to build a comparable basis I will focus on the same metrics as described in the
work of Long et al. [23]. The authors use four variations on pixel accuracy (PA) and
intersection over union (IU).
Especially the mean intersection over union (mIU) is a standard method for segmen-
tation evaluation. For example the Pascal VOC challenge uses this measurement since
2008.
However, all metrics have different pros and cons. One major drawback of all metrics
used in [23] is that the accuracy nearby object boundaries isn’t sufficiently reflected.
Therefore this work uses an additional variant, the so called trimap.
Next, I will state the mathematical definitions and discuss the pros and cons of each

47

4 Implementation and Results

metric. All metrics are based on the confusion matrix C. Cij is the count of all pixels
annotated as class i and predicted as class j. For example Cii is the number of true
positives (TP) for class i. Further conventions are the total number of class instances
ti and the total number of classes ncl.

• pixel accuracy (PA):
∑i cii

∑i ti
(4.5)

The overall per-pixel accuracy measures the ratio of correctly classified pixels
compared to the total number of samples (true positives). A disadvantage of
the metric is that it’s strongly influenced by class imbalance. A classifier betting
always on the majority class can achieve high performance rates. Here, the
"void" class covers approximately 55 percent of an image. Thus, a high PA score
does not necessarily mean that the accuracy is acceptable for all classes.

• mean pixel accuracy (mPA):
1

ncl
⋅ ∑i Cii

ti
(4.6)

First the pixel accuracy is evaluated for each class separately. Next the average
over all classes is taken. This way it’s possible to lower the impact of class
imbalance, but the risk of overvaluation remains. A classifier, which correctly
classifies the region covered by an object but tends to include some pixels of the
surrounding, will achieve a respectable score since mainly one class suffers from
this behavior - namely the background class. The impact of this effect increases
as the number of classes increases.

• mean IU (mIU):
1

ncl
⋅ Cii
(ti +∑j Cji − cii) (4.7)

This metric measures the intersection over union of the predicted labels of each
class and forms the average. The advantage is that the mIU considers both
the false positives and the false negatives. This solves the issues described
before. For that reason it is nowadays the standard metric for semantic segmen-
tation. Nevertheless it does not explicitly measure how precise the segmentation
boundaries are.

• frequency weighted IU (f.w. IU):

1
∑k tk

⋅ ∑i tiCii
(ti +∑j Cji − cii) (4.8)

48

4 Implementation and Results

The frequency weighted intersection over union again targets the overall ac-
curacy. Underrepresented classes receive a smaller weight than others. In
particular this means for this case, that mainly the accuracy of the classes "back-
ground" and "floor" are considered. Such a measurement is not interesting for
this application and therefore wasn’t considered.

• trimap:
The trimap was introduced by Kohli et al. to evaluate the accuracy at object
boundaries [69]. By defining a narrow band around object outlines (see figure
4.4) the evaluation can focus on the results nearby class transitions. For my ex-
periments I’ve used a width of 20 px. This width has to be chosen very carefully.
As most inaccuracies in the ground truth data occur at object boundaries a too
narrow band would result in an insignificant measure. On the other hand a
too wide band barely says something about the spatial accuracy. One solution
to overcome this limitation is to plot the accuracy over the trimap widths [69].
Since I have chosen a very moderate width, I’ve considered only one for this
work. Moreover, the trimap metric was always considered in the context of
other metrics. Both the mIU and the mPA was evaluated within trimap band.

Figure 4.4: An examplary trimap mask. The metrics are evaluated within
narrow bands. In this illustration areas marked in red are ignored for the
specific evaluation.

The most general metric is probably the mean intersection over union (mIU). The
trimap allows to give a statement about the accuracy nearby boundaries. PA and mPA
are still very common and can be found in many publications.

49

4 Implementation and Results

4.3 On the Base Network: Model Definition and

Training

There are many degrees of freedom while designing a deep neural network. For
this reason, but especially because of the immense cost of training, a design by trial
and error is impractical. In addition, the complexity and high dimensionality of the
parameter space hinders to grasp a neural network. Although one can describe the
system mathematically, it appears more or less like a "black box".
The experiences and results of other researchers are important to determine a good
starting point. Mainly based on the work of Long et al. [23] and Zheng et al. [29],
various experiments were carried out in order to find a way to improve the system in
general or to adapt it to certain circumstances.
But first I give a short introduction to the basic setting, especially the net architecture.
Both works [23] and [29] built on top of the results of Simonyan and Zisserman [5].
In their work "Very deep convolutional networks fo large-scale image recognition"
they describe network architectures with up to 19 weight layers. The research groups
of Long and Zheng used the pretrained model of the 16 layer version visualized in
figure 4.5 (downloadable at the modelzoo [52]).

Figure 4.5: An illustration of the "VGG16" net-architecture [5]. The network
consists of convolutional ("conv"), pooling, ReLU and fully-connected ("fc")
layer. Each layer has a name and a number, which indicates the number of
channels. Please note that (although not explictly shown) each "conv"-layer is
actually followed by a ReLU-layer.

50

4 Implementation and Results

This network is known as "VGG16", as it was developed by Oxford’s "Visual Geome-
try Group" and has 16 weight layers. Figure 4.5 illustrates the topology of the network.

Weight layers include the convolution ("conv") and fully-connected layers ("FC").
All-in-all this net consists of 138 million trainable parameters.
"VGG16" is organized in groups of convolution layers, each followed by a max-
pooling layer. Max-pooling is performed within a 2x2 window, with stride 2. As
"VGG16" includes five pooling layers this leads to an overall downsampling factor of
32. Every "conv" layer goes along with a non-linearity (more precisely a ReLU) and
has a very small receptive field of 3x3. As several "conv"-layers form a group, the
effective size of the receptive field increases. Three successive layers cover together
a 7x7 region. Compared with a single layer covering a 7x7 field these three layers
together have approximately 45% less parameters, but include more non-linearities.
Besides the reduced memory footprint, less parameters are advantageous as it reg-
ularizes the network. In addition, using more non-linear transformations makes
the decision function more discriminative [5]. As a result, the VGG-team achieved
remarkable results in the ILSVRC-2014 competition: Second place w.r.t. the classifica-
tion score and first place w.r.t. the localization score [70].
The data set of ILSVRC-2014 includes a total of 150k images, where 100k images serve
for training. There are 1000 object categories.

The pretrained "VGG16" network was "convolutionalized" by Long et al. - i.e. the
fully-connected layers were replace by convolutions with a kernel size of 1x1. Such a
"fully-convolutional" layer results in a linear transformation of the input channels.
Rather than producing one dimensional predictions, this leads to two-dimensional
predictions i.e. the segmentation maps. As already described in section 2.2.3,
the upsampling of the segmentation maps is realized by a skip-architecture. The
model was finetuned on 1464 fully annotated images (PASCAL VOC 2012 challenge)
[64].

As introduced in section 2.3 Zheng et al. improved the spatial accuracy by appending
a graphical model (more precisely a CRF). The finetuning was carried out with an
enlarged PASCAL VOC dataset. Together with a subset of MS COCO [68] they ended
up with a huge set consisting of more than 77k images.

This summary has shown the history of the base model and its evolution over time -
from classification to fine-grained segmentation. This is where my work built upon.
All network variants, which I will introduce in the next sections, were optimized

51

4 Implementation and Results

with SGD and momentum. For the same reasons as Zheng et al. I use one image per
batch. The memory limits of the GPU, the overall net size and the usage of large input
images (768 x 432) enforced this. In order to handle this extremely small batch size
Zheng et al. use a small learning rate (10−13 for the unnormalized loss) and a high
momentum of 0.99. This means that a relatively high fraction of the previous weight
update is added to the current one (compare to section 2.2.1). Thus, congruent weight
updates are amplified, successive updates with different directions are smoothed out.
In other words, the learning "history" has a higher impact on the current learning.
As momentum potentially increases the step size, one must reduce the learning rate
accordingly.
Although this approach worked well, I’ve used an alternative approach. Instead of
using an extraordinary high momentum, I’ve deployed gradient accumulation over
10 iterations. This approach tended to more stable training curves. However, the pros
and cons of both settings were not examined in detail.
Regularization techniques were applied like described in the original "VGG16" net
[64]. This means a dropout operation of ratio 0.5 was performed after the fully-
convolutional layers ("FC") and the weight decay was parametrized by an L2 penalty
multiplier of 5 ⋅ 10−4.

4.4 Preliminary Experiments

Based on the previously described base network and settings I’ve conducted several
preliminary experiments. I elaborated on the following three main aspects:

• facilitating the training process
(especially in the critical initialization phase)

• improving spatial accuracy

• fusing color and depth information

I present the most important results in the corresponding sections. A summary of all
results can be found in the appendix (see table A.2).
Based on the experimental results I have designed and trained the final network,
which I present in section 4.5.

52

4 Implementation and Results

4.4.1 Initialization Phase

The success of training deep neural networks is very dependent on the weight initial-
ization and selection of hyperparameters. Due to the "vanishing gradient" problem
it’s hard to train a large net from scratch. Therefore it’s a common practice to train
large networks in stages. This means that developers start the training with a shallow
network and increase its size gradually. For example the "VGG16" network was
trained in this way [5].
Building a deep neural network can be a costly process. For this reason it’s very
helpful to initialize from a pretrained model. This process is called "finetuning".
Although, I make use of this technique a lot of difficulties remained. Due to the skip
architecture the network intermediately splits into three streams and reconnects again.
This DAG (directed acyclic graph) structure complicates the training procedure and
stalls the learning. Hence, the training is likely to get stuck in a bad local optima. I
have confirmed that in experiments (see figure 4.6). Particularly in the case of very
unbalanced training examples, the network will initially focus on the majority class,
which is indeed an unfavorable local minimum. I have already made arrangements
(e.g. class balancing), but the distributions have not been fully adjusted (see table 4.3).
Many factors influence whether the optimizer will find a way out of an unfavorable
minimum. Major factors are the learning rate, momentum, batch size as well as the
quality and distribution of the training samples.
Due to hardware limitations, a very small batch size had to be chosen, more specifi-
cally only one image per batch. This extreme condition requires a very small learning
rate and a high momentum or alternatively the usage of gradient accumulation. Both
techniques have some kind of smoothing effect on the learning process, which pro-
motes a holistic result. In turn this makes it difficult to escape from a local minimum.
An ideal configuration of all parameters is difficult or sometimes even impossible to
find. At least the search is very time consuming.
Long et al. solve this issue again by stage-wise training [23]. In this way, the amount
of untrained parameters is kept small. The reduced complexity facilitates the learning
process, which is especially crucial for the first iterations.
Although this is a practicable approach, it’s desirable to train a network at once.
Ideally, one would like to reduce the manual effort to a minimum. Because of that I’ve
searched for ways to support the learning process, especially for the first iterations.
Finally I came up with two solutions for training a branched FCN network at once.
The first solution is dependent on the class definitions of the source and target net-
work, whereas the second can be used universally.

53

4 Implementation and Results

Extensive Weight Transfer

Large models are often seen as black boxes, they are hard to understand and to
visualize. On the other hand several works have shown that the early layers tend to
capture very general features. Those are well-suited for the reuse in other models.
An effective approach to tackle new deep learning problems is therefore to transfer the
learning from one model to another. Commonly all weights of the feature extraction
part are transferend and a new classifier is learned on top of it. This works well even
for very distant tasks [17]. If the dataset is large enough, it’s possible to finetune the
entire model with a low risk of overfitting. Usually the benefit of transfering weights
is still measurable - even after many learning iterations [17].
For this work, the transfer of learning is even indispensable. The amount of training
data is insufficient to train a robust deep network from scratch. Moreover my experi-
ments have shown that the transfer of pre-trained classifier weights can help to train
a skip architecture from scratch. In addition, this leads to good segmentation results
within few iterations.
In general, it’s not possible to transfer the weights from one classifier to another, as
usually the number and ordering of the outputs (number of classes) differ. Thus,
the transfer is not supported by the standard routines of Caffe. Fortunately, one can
directly manipulate the model parameters through the Python interface. This way
I’ve selectively copied the classifier weights of identical or similar classes.
Since a model, trained on the PASCAL VOC2012 dataset, was used for this purpose,
it was possible to directly take over the weights corresponding to "person" and "void".
For other classes, not contained in the dataset, I built pairs of visually similar objects.
For example a "palette" shares to some extent the appearance of a "table". Both ob-
jects usually have a wooden texture and consist of horizontal and vertical elements.
Weights associated with the "forklift" class were initialized by the "car" class. Weights
corresponding to "ground" and "marker" were initialized from random variables
generated by a xavier filler with a standard deviation of 0.1 [12].
Figure 4.6 shows the learning curve for a model partially initialized from a pretrained
model compared to the previously described "full" initialization.
If the classifier weights are solely initialized from random numbers the learning
process stalls after few iterations. The values were generated by a so-called "xavier"
initializer with a standard deviation of 0.1 [12]. A constant value of 0 initializes the
bias values. Other combinations were also tested, such as the more recent "msra"
initializer [13], as well as several alterations. But the result was the same (the learning
stalled).

54

4 Implementation and Results

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0.4

0.6

0.8

iter.

PA

partial weight transfer
full weight transfer

Figure 4.6: The dotted line shows the learning curve for 3 randomly initialized
classification layers. The training gets stuck in an inconvenient local mini-
mum. In contrast, the second variant shows a very steep increase (dashed line).
This variant is called "full weight transfer", as all weight layers, including the
classifiers, are initialized from pre-trained weights. The classifier weights are
chosen according to equality or similarity of object classes. Due to better initial
conditions the training is facilitated. This is especially important for the critical
stage at the beginning.

By transferring weights from equal or similar classes the network is capable to achieve
good evaluation scores within few iterations (see figure 4.6). This is due to the better
starting conditions at the initial phase. Thus, the network is already beyond the
"critical point".

Normalization

I’ve already discussed some major problems of training deep neural networks. The
success of training a deep neural network is very dependent on weight initialization
and hyper-parameter selection. Now, I want to discuss further details. What makes
the training of a deep neural network so fragile? One reason for this is the so-called
"covariate shift" [11]. Covariate shift describes the process when the input distribution
of a layer changes. This forces the layer parameters to adapt accordingly. As the input
of each layer is affected by all previous layers this becomes problematic for very deep
networks. Small changes are amplified throughout the network. Consequently the
covariate-shift is more likely to happen. That is why small learning are absolutely
necessary. But small learning rates cause a slow training process and may even
prevent the escape of suboptimal local minima. In order to avoid this effect Ioffe and
Szegedy proposed to normalize all layer inputs such that the input distributions are
kept in bounds [11].

55

4 Implementation and Results

Similar problems occur when different layer outputs are fused - e.g. for multimodal
fusion.
Liu et al. report that different layer outputs are often very dissimilar in scale [71].
This creates problems when those outputs are merged.

Figure 4.7: For spatial refinement three classifiers are trained, each based on
features of different strides. By visualizing the corresponding activations it
becomes clear that the scales do drastically differ. Apparently fusing the three
classifications inhibits the learning process.

In their work "ParseNet: Looking Wider to See Better" they present a special net
architecture where feature vectors are fused by concatenation. They found that
different layers frequently produce features of different scales. Naturally features of
higher scales are emphasized. Apparently the network is not capable to balance this
issue while training. I observed the same problem.
For this reason Liu et al. include a normalization step before fusing features of
different scales. They use the well known L2 normalization. All values are normalized
across channels:

∣∣x∣∣2 =
¿
ÁÁÀ d
∑
i=1

x2
i (4.9)

where:

x is the input vector

d is the vector length, i.e. the number of channels

However normalizing the feature vector to 1 is cumbersome. Normalizing to 1 leads
to very small values which in turn slows down the learning. Therefore it’s helpful to
multiply all values by a factor si. This scaling parameter is initialized by a constant

56

4 Implementation and Results

value (e.g. 10 or 20) and then learned for each channel separately. Thus, each value xi

is processed as follows:
x∗i = si ⋅

xi
∣∣x∣∣2

(4.10)

Inspired by their work I’ve conducted experiments regarding my own network,
especially the skip architecture. Figure 4.7 clearly shows that the activations for
"pool3", "pool4" and "fc7" (see figure 4.5) heavily differ in scale. This makes it difficult
to learn the skip-architecture from scratch.

Figure 4.8: Modified skip-architecture: By introducing a normalization step
before fusing the scores it’s possible to train the skip-architecture at once.

Leveraging from their findings I’ve applied this normalization technique before fusing
classification scores of different strides (see figure 4.8). In contrast to them I normalize
the scores and not the feature vectors. I’ve initialized the scale factors of the first
classifier (on top of f c7) significantly higher than [71] (100 vs. 10). This emphasizes
the influence of the coarsest classifier in the beginning. The influences of the finer
predictions can adapt gradually. My experiments have shown that this technique
facilitates the learning process and leads to better convergence for training a skip
architecture. This effect can be best seen in figure 4.9.

57

4 Implementation and Results

Comparison

To allow a comparison of the proposed methods, figure 4.9 shows all learning curves.
In the following I refer "full weight transfer" as method (a) and L2 normalization" as
(b).

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0.4

0.6

0.8

iter.

PA

partial weight transfer
full weight transfer (a)
L2 normalization (b)

Figure 4.9: Comparison of three variants of training a skip-architecture. The
dotted and dashed lines show the learning curves for the previously described
variants - "partial" and "full weight transfer". These are shown in order to
enable a better comparison. L2 normalization allows to train the entire skip
architecture from scratch and even outperforms the second variant on the long
run.

Both methods are enabling the training from scratch of the entire skip architecture.
L2 (b) leads to steady convergence and outperforms other methods w.r.t. PA in the
long run. However, the previous discussion on the PA metric in section 4.2.1 should
be considered. This metric shows a general trend, but does not allow a distinct
assessment of segmentation accuracy. For this reason the slightly better performance
is not a significant advantage. However, the great advantage of using (b) compared
to the method (a) is its universal applicability.
In order to compare both models more accurately further error metrics are presented
in table 4.4.

Table 4.4: Final results averaged over classes for the proposed
methods.

mPA mIU mFP

(a) full weight-transfer 0.798 0.700 0.021
(b) normalization 0.753 0.689 0.018

58

4 Implementation and Results

Here the result is indeed different. Method (a) achieves higher values for both
mPA and mIU compared to (b). However, the visual results of method (b) look
more consistent (figure 4.10). There are less misclassified "speckles". This is as well
confirmed by the false positive rates (mFP).
Due to its universal applicability and the more consistent results I decided to deploy
method (b) in the final model (see section 4.5).

(a) Full weight transfer; method (a) (b) L2 normalization; method (b)

(c) Full weight transfer; method (a) (d) L2 normalization; method (b)

Figure 4.10: Visual comparison of both presented methods (a) and (b). The
segmentation result of method (a) shown on the left side is less consistent i.e.
includes speckled labelings. Whereas method (b) produces contiguous labeled
areas. Apart from the visual consistency, method (a) achieves better results.
The small marker visible in the first row, is detected correctly on the left side,
whereas on the right side not.

4.4.2 Spatial Accuracy Refinement

Deep neural networks, like "VGG16", are very powerful in making robust classifi-
cations, but its "convolutionalized" counterpart shows weaknesses when it comes
to spatial accuracy. This section will first recap the reasons and ways to atten-
uate this weakness. Then I will analyze the impact of two selected techniques
for recovering fine details. The results are compared both visually and quantita-
tively.

59

4 Implementation and Results

The "VGG16" and also other networks are designed to solve high-level vision tasks.
High-level tasks, such as image classification, desire a meaningful and general repre-
sentation of the image as a whole. There is no need to retain spatial information. A
desirable property of such a CNN is the invariance w.r.t. geometric transformations.
Weight sharing and max-pooling contribute to this property. Usually, pooling goes
hand-in-hand with down-sampling ("striding"), which dumps spatial information.
The "VGG16" net for example includes 5 max-pooling layers of stride 2, which leads
to a 32 times downsized image representation. Although the image dimensions of in-
and output can be aligned by interpolation, the spatial accuracy can not be restored
this way (see figure 4.12(a)).
What options are available to solve this problem? One simple implication is to reduce
the grade of down-sampling. Long et al. made an attempt to change the output stride
of pool5 from 2 to 1, but weren’t able to achieve results comparable to their final
solution [23]. My experiments have shown similar difficulties. Likewise a shortened
network, where all layers between pool4 and pool5 were omitted, didn’t lead to
competitive results.
This is why I’ve applied the same skip-architecture as proposed by Long et al.. In
addition to the classifier based on the 32s-input (32s = stride 32) of fc7, additional
classifiers are trained on top of pool4 and pool3. First, the 32s- and 16s outputs are
fused, by combining both scores by an elementwise sum (see figure 4.12(b)). Since the
32s output is two times smaller than the 16s output it must be upsampled accordingly.
This is done by a deconvolution layer with a kernel stride of 2 and the double kernel
size (i.e. 4). The weights of the deconvolution layer are filled by a bilinear filler
and are fixed during training. This is repeated in the same manner for the fusion of
stride 8 (see figure 4.12(b)). Finally the segmentation map is upsampled by another
deconvolution layer by factor 8 (i.e. stride 8). Accordingly this layer has a kernel
size of 16. The kernel weights are initialized from a bilinear filler as well, but are
adoptable during training.
As stated by Long et al. the fusion of earlier layers (e.g. pool2) does not further
improve the segmentation accuracy. Figure 4.13 shows that in fact the improvements
tend to saturate.

Another approach includes the use of a graphical model. With the help of the original
input image it’s possible to refine the coarse segmentation maps by applying a CRF.
The 8s-output serves for initialization of the unary potentials (see section 2.3). The
potentials are refined by maximizing the local consistency of appearance. In this
case the color vector was used in order to represent the local appearance. The CRF

60

4 Implementation and Results

implementation I’ve used in this work is publicly available [28].
All CRF hyperparameters were set to the same values as used by Chen et al.. This
decision is based on a parameter search on the validation test-set w.r.t. the PA metric.
I’ve used "Spearmint with Caffe" (see section 3.2, [54]) for bayesian parameter opti-
mization. The optimization process led to very similar parameters with only slightly
better accuracies (0.2%). Since Chen et al. used a significantly larger validation-set I
found their findings more trustworthy. For that reason and the marginal improve-
ments I’ve decided to take over the same hyperparameters.
Both the spatial and bilateral weights are initialized from constant values. Based on
the validation errors I use 3 and 4 respectively (instead of 3 and 5 [28]). The diagonal
of the compatibility matrix is initialized by -1. The entries of spatial, bilateral and
compatibility matrix are then optimized by back-propagation. As recommended I’ve
used only 5 iterations for training, but 10 iterations for inference.
Figure 4.11 shows the iterative improvement of the probability maps.

(a) input (b) n = 0 iterations (c) n = 2 iterations (d) n = 5 iterations (e) n = 10 iterations

Figure 4.11: Visualization of the CRF convergence. The subse-
quent plots show the evolution of probability maps after n itera-
tions. Black means 0%, whereas white stands for 100% confidence.
(a) test image; (b)-(e): probability maps for class "forklift" after n CRF iterations

The visual comparison of the example images (a)-(c) shows how the skip-architecture
recovers fine details (see figure 4.11). The forklift is a good example to see the
evolution. In (a) the forklift is labeled very coarsely - like someone used a huge brush
to paint it. As a result thin parts like the fork are missed and the object boundaries are
blurred. This introduces many misclassifications. In (b) the level of detail is improved
significantly - best seen at the forks. The fusion of the 8s-scores (image (c)) removes
some smaller faulty regions and leads to slightly better results at object boundaries.
Image (d) shows the strengths of a CRF. Based on local similarity it adjusts the labeling.
A correct but coarse initialization can be refined, which is especially visible at the
object boundaries. Nevertheless, the possibilities have not been fully exploited, as
you can see at the tip of the fork or the right foot.

61

4 Implementation and Results

(a) 32s (b) 16s

(c) 8s (d) 8s+CRF

Figure 4.12: (a) - (c) Comparison of fusing different strides. (d) Additional
refinements by a CRF.

By measuring the accuracy at object boundaries this effect can be confirmed quanti-
tatively. The mIU shows a clear upward tendency (see figure 4.13). The mPA value
drops at the end (8s+CRF), however this can be explained by the weaknesses of the
metric (see section 4.2.1).

32s 16s 8s 8s+CRF

0.3

0.4

0.5

0.6

0.7 mPA
mIU

Figure 4.13: Accuracy at object boundaries (trimap of 20px).

62

4 Implementation and Results

4.4.3 Multimodal Fusion

In section 2.4 I’ve given a general motivation for fusing multimodal inputs, especially
concerning color and depth information. While it seems obvious that our system
could benefit from depth data, the technical implementation is not that trivial.
First of all the input format has to be conform with the net-structure. More restrictions
emerge when the model should be finetuned from an existing RGB model. In that
case the three channel input has to be maintained. With the requirement to maintain
the original RGB input, this leads to a two-stream architecture - one for color and
one for depth. In order to fulfill the net specification one has to spread the depth
information over all three channels (compare to section 2.4.1).
At some point both streams need to be fused. According to the literature there seems
to be no general rule of thumb [23][35][71]. Both "early fusion" and "late fusion" (de-
scribed in section 2.4.2) approaches are capable to achieve good results [71]. For that
reason I’ve applied both. In the following I will describe different "early fusion" and
"late fusion" approaches and present the evaluation results.

Late Fusion

RGB-HHA net
The first attempt followed the proceeding described by Long et al. [23]. First both
networks were trained separately until the evaluation error (mPA) began to converge.
Then both networks were fused lately after classification by an elementwise sum.
Late fusion has the advantage that arbitrary networks can be fused since the clas-
sification maps are guaranteed to be of equal sizes. This is not always the case for
intermediate outputs, such as feature maps. Hence, different network architectures are
interchangeable. This work compares two combinations:

• "VGG16-VGG16": A "VGG16" based net was used for both modalities (likewise
Long et al. [23])

• "VGG16-Alex": A "VGG16" based net was used for color and "AlexNet" [4] for
depth.

63

4 Implementation and Results

"AlexNet" is a more light-weight net architecture with only 60k versus 130k param-
eters. The reduced time and space complexity is of course a desirable property for
both training and deployment stage.
Unfortunately both configurations led to worse results than the single stream network
(RGB only). Moreover the "VGG16" outperforms "AlexNet" significantly:

Table 4.5: Late Fusion of RGB and Depth-Streams: VGG16-VGG16 vs.
VGG16-Alex

VGG16-VGG16 VGG16-Alex

mPA 0.774 0.488
mIU 0.677 0.341

One possible explanation is that the depth-stream performs noticeable worse than the
RGB-stream. This may be due the little amount of training data including depth. In
addition the late fusion approach allows little space for adaptations. The RGB results
aren’t emphasized accordingly.

Early Fusion

RGB-HHA net
The first attempt for early fusion followed roughly the instructions of Eitel et al.
[35]. The feature vectors of fc7 (both VGG16) are concatenated such that a single
classification layer can be trained on top. In contrast to [35] I keep fc6 and fc7 in their
original configuration. Thus, the number of channels is twice as large (8192).
The classifier on top of the concatenated features is followed by the original skip
architecture (color-based) as described by Long et al. [23]. All weights were initialized
by pretrained weights (see section 4.4.1).
The performance of this net is even worse than the "late fusion" variant "VGG16-
VGG16". It achieves a mean intersection over union of only 0.623 (see table 4.6).
One possible explanation is that the features vectors are of different scale. Without a
normalization step this leads to a poor performance as some features dominate over
others. One could argue that the weights might adopt accordingly during training,
but this was disproved [71]. In addition, this would demand to enable learning in
previous layers (i.e. set the local multipliers for the learning rate to values greater

64

4 Implementation and Results

than zero). This is inappropriate because it would promote overfitting. Moreover this
would blow up the memory consumption making it impracticable to train in "GPU
mode".
Because of these reasons I’ve decided to add a normalization step before concatena-
tion as described by Liu et al. [71]. Similar to the normalization described in section
4.4.1 a L2 normalization with additional scaling parameter (initialized by a constant
value of 10) was applied. This normalization technique was developed for exactly the
same purpose and has shown promising results [71].
Contrary to my expectations this led to even worse results (see table 4.6). One

Table 4.6: Comparison of early fusion w and w/o L2 normalization.

w/o w L2-normalization

mPA 0.726 0.536
mIU 0.623 0.435

idea to facilitate the learning would be to initialize the scaling parameters in an
ascending manner. Hence, higher initial weights for the coarsest and smaller for
the finest level. In this way, the training process is encouraged for gradual refine-
ment.

RGB-H net
The poor results of the previous attempts led me to another more light-weight ap-
proach. Under consideration that it might be a good idea to stay as close as pos-
sible to the well-performing RGB architecture the idea evolved to use the height
as an additional feature for classification. Figure 4.14 illustrates the main princi-
ple.

A grayscale image, which represents the height over ground (H), serves as the sole
depth input. Instead of extracting high level features the overall form is preserved. For
practical reasons the height image is downsized according to the RGB-input by aver-
age pooling. In this way the H-feature and the color features can be concatenated at all
stages of the skip architecture (not illustrated in figure 4.14).

Table 4.7 shows that the additional H-feature slightly improves the segmentation ac-
curacy. One would expect that especially errors, nearby the ceiling, can be prevented.
Figure 4.15 partially supports this presumption. Apparently, the influence of the H-
feature is not strong enough to suppress the entire region.

65

4 Implementation and Results

Figure 4.14: Illustration of the RGB-H network. By concatenating 4096 RGB-
and one height feature it’s possible to learn linear combinations of features
obtained from both modes. The pixel-wise classification is based on the con-
catenated feature vector.

Table 4.7: Class-mean accuracies for the fully convolutional network
(RGB-H input).

RGB net RGB-H net

mPA 0.753 0.772
mIU 0.689 0.690

One explanation is that the RGB-features dominate over the H-feature (4096 vs. 1).
The regularization term (compare to equation 2.4) prevents that a single feature
gets a much higher (or smaller) weight than others. In order to increase the influ-
ence of the height, one could lower the weight decay for the classification layer,
but this would also affect all other weights. This would increase the risk of overfit-
ting.

Another idea, is to duplicate the H-feature. In this way the weight decay remains
untouched. One drawback is that this method introduces more parameters. In addi-
tion, it’s not clear how many times the value has to be duplicated. This should
be determined experimentally. In this study, no further experiments were con-
ducted.

66

4 Implementation and Results

(a) RGB net, variant (b) (b) RGB-H net

Figure 4.15: A visual comparison of the RGB- (left) and RGB-H (right) net
outputs shows that the segmentation results are quite similar. On the right the
incorrectly labeled region ("floor" instead of "void") nearby the ceiling is slightly
smaller (marked by a black oval).

4.5 Final Approach

Based on preliminary experiments I’ve designed and trained the final model. In order
to achieve a high segmentation accuracy I used a network similar to Zheng et. al.
Thus, consisting of a FCN and an CRF part.
In contrast to them, I used (as described in 4.4.1) a L2 normalization to facilitate the
training process. Furthermore the classification is based on color- and height-images.
The color features are extracted by the "VGG16" based part, but the height image is
merely downsized and then directly used. Both modes are fused by concatenation in
an early manner. This principle is illustrated in figure 4.14.
The training was divided into three stages. First I’ve trained the network based on
RGB input only. In this way it was possible to leverage from all available RGB-images
(see section 4.1).
The next step was to manually transfer the pretrained weights to the RGB-H network.
This was necessary, as additional parameters are needed and therefore the mapping
between source and target network was ambiguous. The classifier was finetuned on
color and height images.
Finally, the net was extended by the CRF and again finetuned. Please note that this
increases the accuracy, but also increases the runtime. In my setting, ten CRF iteration
approximately increases the runtime by 690ms (960x540 input image). However, by
changing the network definition the CRF can be turned off easily. Depending on the
requirements, this can be changed anytime.

Table 4.8 shows the final results w.r.t. various metrics. The average runtime for one
forward pass is approximately 1170ms (input: 960x540 RGB-H-image). This test was

67

4 Implementation and Results

Table 4.9: Per-class results for the final fully convolutional network
(RGB-H input).

Trimap 20px
class mPA IU mPA IU

ground 0.962 0.930 - -
pallet 0.866 0.688 0.832 0.597
person 0.884 0.803 0.841 0.725
forklift 0.870 0.773 0.763 0.623
marker 0.229 0.098 0.230 0.073
void 0.950 0.902 - -

conducted on a high-end GPU (see section 3.2). Though, the CRF was executed on
the CPU. The implementation for GPU execution is a possible optimization step for
future works .

Table 4.8: Class-mean accuracies for the final fully convolutional
network with connected CRF (RGB-H input).

Trimap 20px

mPA mIU mPA mIU

0.793 0.699 0.667 0.504

My model obtains a (class average) mIU of 0.699. Compared to the results of Long
et al. (0.622) and Zheng et al. (0.720) on Pascal VOC 2012 this is a reasonable value.
With significantly more training data (incl. MS COCO) Zheng et al. even reach a
score of 0.747. As the models are trained on different data sets and object categories,
the results are not directly comparable. However, it allows a rough judgment and
plausibility check.
Particularly revealing are the class-specific values. These are shown in the appendix
A.11. It is striking that the marker class achieved very poor results. By excluding
this value the model would obtain a significantly higher mIU value of 0.819. This
result is not surprising. Despite class balancing the "marker" class is extremely
underrepresented. Furthermore the appearance is often suboptimal - small and
distorted. This is due to the wide-angle lens, the low camera position and the relatively
small size of the marker. A higher camera position and orientation towards the ground

68

4 Implementation and Results

would improve the conditions for the marker perception. However, other objects,
such as forklifts or persons, would likely be cropped.

By visualizing the test results (shown in figures A.1 and A.2) it’s possible to analyze
the strength and weaknesses of the model. One can see that the segmentation results
are generally very robust.
Overall there are few misclassified regions. Inaccuracies frequently occur when objects
are occluded (best seen in figure A.15). As you can see in figure A.11 some areas of

(a) (b) (c)

(d) (e) (f)

Figure 4.16: Exemplary segmentation results of the final net configuration.
Problematic regions have been marked with a black-rimmed ellipse. Further
segmentation results can be found in the appendix A.2.

the floor are labeled incorrectly. This phenomenon appeared with the inclusion of the
height and especially at image borders. Usually there is a lack of depth information
in these regions. As these regions become larger the inpainting method is not able
to reconstruct the missing information. However, the advantage of height inclusion
is an increased robustness for other classes. There occur less wrong speckles (for
example, objects nearby the ceiling). In my opinion, this advantage outweighs the
disadvantages for the ground class.

Despite several precautions to avoid overfitting (e.g. regularization, data augmenta-
tion), it’s not clear if the model can perform equally well in other warehouses. The
tests I’ve carried out can not prove such a strong statement. Without a doubt the
use case is very challenging and requires a robust model. However, compared to

69

4 Implementation and Results

other use cases, e.g. self-driving cars, the conditions are more manageable. Espe-
cially indoors, the lighting conditions are controllable. Moreover the appearance of
objects belonging to the same class are very similar (e.g. certain type of palette or
forklift). Moreover, it is conceivable to deliver customized solutions by finetuning
the neural network on additional location-specific images. This is a general advan-
tage of machine learning solutions - they can be automatically adapted to specific
conditions.

Migration to a ROS application

Figure 4.17: A ROS pipeline for semantic segmentation based on RGB-D images.
The segmentation is used to prepare a colored image and pointcloud. These
serve as an input for rviz. Rviz is a visualization tool for 2D and 3D provided
by ROS.

In order to demonstrate the usage of semantic segmentation on a robotic system I’ve
implemented an exemplary ROS application. The communication graph is visualized
in figure 4.17. I’ve embedded the depth encoder and Caffe model in a ROS node
(node: "Segmenter"). Based on depth and color input the "Segmenter" node segments

70

4 Implementation and Results

the input into the predefined object categories. Depth is represented by an organized
pointcloud, which is provided by a RGB-D camera, such as a Kinect camera. Color is
represent by a three channel RGB image.
A custom ROS message type wraps the input and segmentation output. This is ad-
vantageous, because for subsequent ROS nodes the synchronization of the messages
doesn’t have to be performed again. Since the data is passed via smart pointers, no
additional costs arise.
The next node colorizes the image and pointcloud for visualization (node: "Visual-
izer"). Colors are assigned by a predefined look-up table. The colors are added as an
overlay to the orginal image. The resulting color components are transfered to the
PCL pointcloud. This is possible as the pointcloud is stored in the same order as the
image.
Actually, the "Visualizer" node doesn’t visualize the output, instead it prepares the
segmentation output for visualization. This can be done by rviz, a tool for visualizing
3D and 2D data. The 3D viewer allows to navigate through the 3D model and is also
very helpful during the development process. An exemplary screenshot of the visual-
ization result can be seen in figure 4.18. More screenshots and the entire screencast
video can be found in the appendix (A.2, A.1).

Figure 4.18: A screenshot of rviz showing the segmented image and pointcloud.
Even the dummy (not contained in the training data) laying on the ground has
been detected correctly. This indicates that the system is invariant with respect
to various geometric and perspective transformations.

In the future, the published messages may be consumed not only by one node.
Possibly other nodes will join the application graph. These would be responsible, for
example, for path planning or for picking up a palette.

71

5 Future Work and Conclusion

Future Work

In the following I want to share some thoughts and recommendations for future
works. Three aspects are mainly important for realizing this feature on a product
- the required accuracy and runtime, as well as the size and costs for the deployed
hardware. These aspects are of course very case sensitive and interdependent. A
comprehensive solution must be found.

Accuracy: Further improvements by simply re-training on more annotated data ex-
pectable. This assumption is supported for instance by the results of Zheng et al.. They
obtain an improvement of 2.7% w.r.t. mIU by increasing the training set significantly.
Of course, the provision of annotated training data is quite costly. It’s therefore impor-
tant to determine the requirements for a certain use case. One should also consider
other ways to increase the database. For example:

• Usage of computer generated images:

– Generation of different views from 3D models.

– Deployment of generative models for image generation, such as described
in [72].

• Usage of weakly annotated images. For example, Bearman et al. work with
annotations of one pixel per object [73]. Such annotations can be created much
faster. Weak annotations are particularly suitable for pretraining the model.

With more training examples, one should reconsider the presented RGB-HHA net-
works (see section 4.4.3). These architectures have been successfully applied in other
works [23] [35].
There are many other ways to improve the segmentation accuracy. This usually
involves more sophisticated techniques and further development.
Currently each image is processed separately. Successive images often contain redun-
dant or similar information. With the inclusion of previous segmentation results, it’s
possible to improve the runtime, as well as the accuracy. One possibility to enhance

72

5 Future Work and Conclusion

the segmentation quality is the usage of spatio-temporal CRF’s, like it is described
in the work of Liu et al. [74]. Another graph-based approach to enforce temporally
consistent pixels was presented by Couprie et al. [75].

Runtime: This is probably the most critical point. The presented network is far away
from a possible real-time usage. First I will present the most obvious and "easy to
implement" options.
Although many calculations already benefit from hardware acceleration, there is still
a need for further optimization. At present, the CRF can only be executed on the
CPU. Parts of the depth-encoding can be easily parallelized as well. Height and
disparity are calculated individually for each point. Thus, a parallel execution is
straight forward.
The immense number of parameters of the proposed DNN is a key factor for its
high segmentation quality. On the other hand it limits the execution speed. One
computational bottleneck lies in the first fully convolutional layer. It has 4096 filters
of 7x7 spatial size. Chen et al. decrease the spatial size to 4x4 (or 3x3) and reduce
the number of channels to 1024 with no significant loss in segmentation accuracy
[28]. Probably due to the lack of training images I was not able to achieve equivalent
results. For this reason I decided to stay with the pre-trained fully connected layers.
However, this approach is still promising for future works.
Other studies also investigated on the reduction of network parameters, in order to
reduce the memory footprint, the energy consumption and runtime [76] [77] [78].
While the abundance of parameters seems important to train complex models, only
few weights are important for the final performance. This fact can be exploited, in
order to thin out the layer connections. In this way, an optimized network with sparse
layer connections is obtained. For example Han et al. learn which connections are
crucial for the DNN and then prune redundant connections. This is followed by a
further finetuning step [76].
Chen et al. follow a different approach. Instead of pruning weights, the memory con-
sumption is reduced by randomly sharing weights. The shared weights are accessed
by a low-cost hash function [79].
Another idea would be to fill the temporal gaps between segmentation results
with predictions based on appropriate tracking methods. For example, if an ob-
ject was correctly detected and localized, it can be usually tracked for at least
the next subsequent frames. Such tracking systems have been around for some
time.

Hardware: If the application affords to cover a close range area, a ToF camera is an

73

5 Future Work and Conclusion

appropriate choice. However, due to their size the Kinect is unsuitable for the usage
on a product. The market already holds some suitable industrial cameras for this
purpose. Further developments can be expected.
To run the DNN an implementation on a FPGA (Field Programmable Gate Array)
might be appropriate. A FPGA has several advantages: low cost, low energy consump-
tion, small physical size and usually a decent speed-up compared to ordinary CPU’s.
A nice overview is given by Vasilyev and Artem [80].

Conclusion

In the scope of this work a deep neural network for segmentation tasks has been
developed. The work was embedded in the context of autonomous forklifts. However,
the overall approach and the system is capable for transferal to other use cases. The
goal was to provide a detailed understanding of the environment. Despite several
difficulties this objective has been achieved. My work described possible pitfalls
and how to handle them. Although there was a lack of annotated data the final
model achieved competitive results. This was mainly possible through appropriate
augmentation techniques and the transferring of learning.
Another interesting aspect was the incorporation of depth. Initially I suspected that
depth information will improve the segmentation result significantly. Surprisingly it
was hard to surpass the results based on pure color images. The most likely reason is
again the lack of annotated data. Although the amount of depth data was insufficient
to train a complex model, I was able to design a more light-weight model. This model
based on RGB-H input served as a suitable compromise.
Although the depth information is not crucial for the segmentation result, it is still
useful for many applications. The combination of depth and semantics is very power-
ful. Especially autonomous systems can highly benefit from such a knowledge. By
knowing the positions of certain objects it’s easier to perform specific tasks - such as
navigation or palette carriage.

74

A Appendix

A.1 Segmentation Results

Table A.1: Overview over all tested net configurations. The last
colum "Ref." refers to the relevant section.

Net conf. Input Base Network L2 norm. Fusion CRF Ref.

(a) RGB VGG16 N N N 4.4.1
(b) RGB VGG16 Y N N 4.4.1
(c) RGB VGG16 Y N Y 4.4.2
(d) RGB-HHA VGG16 (2x) Y Late N 4.4.3
(e) RGB-HHA VGG16/Alex N Late N 4.4.3
(f) RGB-HHA VGG16 (2x) N Early N 4.4.3
(g) RGB-HHA VGG16 (2x) Y Early N 4.4.3
(h) RGB-H VGG16 Y Early N 4.4.3
(i) RGB-H VGG16 Y Early Y 4.5

Table A.2: Test results of different net configurations (see legend in
table A.1).

Trimap 20px
Net conf. mPA mIU fp-rate mPA mIU

(a) 0.798 0.700 0.021 0.714 0.545
(b) 0.753 0.689 0.018 0.568 0.491
(c) 0.796 0.703 0.014 0.656 0.512
(d) 0.774 0.677 0.025 0.667 0.529
(e) 0.488 0.341 0.055 0.310 0.114
(f) 0.726 0.614 0.035 0.677 0.486
(g) 0.536 0.435 0.051 0.386 0.353
(h) 0.772 0.690 0.018 0.604 0.490
(i) 0.793 0.699 0.015 0.667 0.504

75

A Appendix

Table A.3: Per-class results for net configuration (a) (initialization by
"full weight transfer").

Trimap 20px
class PA IU PA IU

ground 0.937 0.895 - -
pallet 0.847 0.639 0.836 0.581
person 0.876 0.787 0.838 0.702
forklift 0.879 0.740 0.791 0.592
marker 0.331 0.276 0.389 0.305
void 0.920 0.864 - -

Table A.4: Per-class results for net configuration (b) (RGB-input, L2
normalization).

Trimap 20px
class PA IU PA IU

ground 0.959 0.912 - -
pallet 0.802 0.688 0.731 0.593
person 0.785 0.732 0.697 0.624
forklift 0.808 0.740 0.662 0.570
marker 0.329 0.191 0.328 0.174
void 0.947 0.877 - -

Table A.5: Per-class results for net configuration (c) (RGB-input, L2
normalization, CRF).

Trimap 20px
class PA IU PA IU

ground 0.959 0.932 - -
pallet 0.861 0.698 0.829 0.609
person 0.868 0.798 0.819 0.721
forklift 0.855 0.779 0.747 0.639
marker 0.268 0.103 0.230 0.078
void 0.964 0.905 - -

76

A Appendix

Table A.6: Per-class results for net configuration (d) (RGB-HHA
input, L2 normalization, late fusion).

Trimap 20px
class PA IU PA IU

ground 0.961 0.870 - -
palett 0.823 0.645 0.781 0.583
person 0.842 0.755 0.769 0.674
forklift 0.876 0.751 0.761 0.610
marker 0.262 0.207 0.358 0.248
void 0.878 0.836 - -

Table A.7: Per-class results for net configuration (e) (RGB-HHA
input, VGG16-AlexNet, late fusion).

Trimap 20px
class PA IU PA IU

ground 0.772 0.737 - -
pallet 0.249 0.055 0.299 0.052
person 0.540 0.376 0.507 0.356
forklift 0.515 0.092 0.434 0.048
marker 0.000 0.000 0.000 0.000
void 0.853 0.785 - -

Table A.8: Per-class results for net configuration (f) (RGB-HHA input,
early fusion).

Trimap 20px
class PA IU PA IU

ground 0.943 0.808 - -
pallet 0.553 0.473 0.705 0.555
person 0.896 0.741 0.862 0.643
forklift 0.915 0.684 0.826 0.504
marker 0.222 0.193 0.316 0.241
void 0.828 0.786 - -

77

A Appendix

Table A.9: Per-class results for net configuration (g) (RGB-HHA
input, early fusion, normalization).

Trimap 20px
class PA IU PA IU

ground 0.935 0.814 - -
pallet 0.264 0.258 0.294 0.289
person 0.531 0.489 0.540 0.501
forklift 0.491 0.455 0.550 0.490
marker 0.053 0.051 0.159 0.133
void 0.940 0.542 - -

Table A.10: Per-class results for net configuration (h) (RGB-H input,
early fusion, normalization).

Trimap 20px
class PA IU PA IU

ground 0.959 0.912 - -
pallet 0.802 0.688 0.731 0.593
person 0.785 0.732 0.697 0.624
forklift 0.808 0.740 0.662 0.570
marker 0.329 0.191 0.328 0.174
void 0.947 0.877 - -

Table A.11: Per-class results for net configuration (i) (RGB-H input,
early fusion, normalization, CRF).

Trimap 20px
class PA IU PA IU

ground 0.962 0.930 - -
pallet 0.866 0.688 0.832 0.597
person 0.884 0.803 0.841 0.725
forklift 0.870 0.773 0.763 0.623
marker 0.229 0.098 0.230 0.073
void 0.950 0.902 - -

78

A Appendix

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27

Figure A.1: Segmentation results of the final net configuration (i) (identifiers
are explained in table A.1).

79

A Appendix

1 2

3 4

5 6

7 8

Figure A.2: Segmented images (right) and pointclouds (left) visualized in rviz.
These results were obtained from the net with configuration (i) (identifiers are
explained in table A.1).

80

A Appendix

Attached DVD

• Screencast: Visualization of segmentation results in rviz

• Thesis in digital form

81

Bibliography

[1] D. Lin, C. Kong, S. Fidler, and R. Urtasun, “Generating multi-sentence lingual
descriptions of indoor scenes,” Mar. 2015.

[2] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image
caption generator,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3156–3164, 2015.

[3] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems 25 (F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds.),
pp. 1097–1105, Curran Associates, Inc., 2012.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” Sept. 2014.

[6] A. Barron, “Universal approximation bounds for superpositions of a sigmoidal
function,” Information Theory, IEEE Transactions on, vol. 39, pp. 930–945, May
1993.

[7] G. Montavon, G. B. Orr, and K.-R. Müller, eds., Neural Networks: Tricks of the
Trade, Reloaded, vol. 7700 of Lecture Notes in Computer Science (LNCS). Springer,
2nd edn ed., 2012.

[8] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in
Proceedings of COMPSTAT’2010, pp. 177–186, Springer, 2010.

[9] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” July 2012.

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

82

Bibliography

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” Feb. 2015.

[12] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS™10). Society for Artificial Intelligence
and Statistics, 2010.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” Feb. 2015.

[14] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” Nov. 2013.

[15] A. Mahendran and A. Vedaldi, “Understanding deep image representations by
inverting them,” Dec. 2014.

[16] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep
convolutional neural networks,” Jan. 2013.

[17] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?,” Advances in Neural Information Processing Systems
3320-3328. Dec. 2014, vol. Advances 3320-3328. Dec. 2014, pp. Advances in
Neural Information Processing Systems 27,pages 3320–3328 Dec.2014, Nov.
2014.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” Nov. 2013.

[19] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features from
rgb-d images for object detection and segmentation,” July 2014.

[20] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous detection
and segmentation,” July 2014.

[21] J. Long, N. Zhang, and T. Darrell, “Do convnets learn correspondence?,” Nov.
2014.

[22] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical fea-
tures for scene labeling,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 35, no. 8, pp. 1915–1929, 2013.

83

Bibliography

[23] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” CoRR, vol. abs/1411.4038, 2014.

[24] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic
segmentation,” May 2015.

[25] C. Sutton and A. McCallum, “An introduction to conditional random fields,”
Foundations and Trends in Machine Learning, vol. 4, no. 4, pp. 267–373, 2011.

[26] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs with
gaussian edge potentials,” in Advances in Neural Information Processing Systems
24 (J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, eds.),
pp. 109–117, Curran Associates, Inc., 2011.

[27] A. Adams, J. Baek, and M. A. Davis, “Fast high-dimensional filtering using the
permutohedral lattice,” vol. 29, no. 2, pp. 753–762, 2010.

[28] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Seman-
tic image segmentation with deep convolutional nets and fully connected crfs,”
Dec. 2014.

[29] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. S. Torr, “Conditional random fields as recurrent neural
networks,” Feb. 2015.

[30] R. Rojas, Neural Networks: A Systematic Introduction. New York, NY, USA:
Springer-Verlag New York, Inc., 1996.

[31] A. G. Schwing and R. Urtasun, “Fully connected deep structured networks,”
Mar. 2015.

[32] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang, “Semantic image segmentation via
deep parsing network,” Sept. 2015.

[33] G. Lin, C. Shen, I. Reid, and A. van den Hengel, “Deeply learning the mes-
sages in message passing inference,” June 2015.

[34] G. Lin, C. Shen, I. Reid, and A. van dan Hengel, “Efficient piecewise training
of deep structured models for semantic segmentation,” Apr. 2015.

[35] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard, “Multi-
modal deep learning for robust rgb-d object recognition,” July 2015.

84

Bibliography

[36] M. Bertalmio, A. L. Bertozzi, and G. Sapiro, “Navier-stokes, fluid dynamics,
and image and video inpainting,” in Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,
vol. 1, pp. I–355, IEEE, 2001.

[37] B. Ionescu, J. Benois-Pineau, T. Piatrik, and G. Qunot, Fusion in Computer Vi-
sion: Understanding Complex Visual Content. Springer Publishing Company,
Incorporated, 2014.

[38] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in ECCV, 2012.

[39] C. G. M. Snoek, M. Worring, and A. W. M. Smeulders, “Early versus late fu-
sion in semantic video analysis,” Proceedings of the 13th annual ACM interna-
tional conference on Multimedia - MULTIMEDIA™05, 2005.

[40] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,”
2013.

[41] Microsoft Corp., Redmond WA., Kinect for Xbox 3.

[42] S. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth sensor - system
description, issues and solutions,” in Computer Vision and Pattern Recognition
Workshop, 2004. CVPRW ’04. Conference on, pp. 35–35, June 2004.

[43] J. Sell and P. O’Connor, “The xbox one system on a chip and kinect sensor,”
IEEE Micro, vol. 34, pp. 44–53, Mar 2014.

[44] E. Lachat, H. Macher, M.-A. Mittet, T. Landes, and P. Grussenmeyer, “First
Experiences with Kinect v2 Sensor for Close Range 3d Modelling,” ISPRS - In-
ternational Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, pp. 93–100, Feb. 2015.

[45] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron,
N. Bouchard, and Y. Bengio, “Theano: new features and speed improvements.”
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop,
2012.

[46] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like envi-
ronment for machine learning,” in BigLearn, NIPS Workshop, no. EPFL-CONF-
192376, 2011.

85

Bibliography

[47] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
(Preliminary White Paper, November 9, 2015),” Nov. 2015.

[48] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-
ding,” Aug. 2014.

[49] NVIDIA, caffe - NVIDIA. https://github.com/NVIDIA/caffe, Accessed: 2016-
01-06.

[50] NVIDIA, DIGITS. https://github.com/NVIDIA/DIGITS, Accessed: 2016-01-06.

[51] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer, “cudnn: Efficient primitives for deep learning,” Oct. 2014.

[52] Berkeley, Model Zoo. https://caffe.berkeleyvision.org/model_zoo.html,
Accessed: 2015-12-05.

[53] NVIDIA, Tesla K-80 Board Specification v05, January 2015. http://images.n

vidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf,
Accessed: 2016-01-06.

[54] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” June 2012.

[55] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA Workshop on
Open Source Software, 2009.

[56] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE
International Conference on Robotics and Automation (ICRA), (Shanghai, China),
May 9-13 2011.

[57] PCL: Point Cloud Library. https://github.com/PointCloudLibrary/pcl, Ac-
cessed: 2016-01-17.

86

https://github.com/NVIDIA/caffe
https://github.com/NVIDIA/DIGITS
https://caffe.berkeleyvision.org/model_zoo.html
http://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf
http://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-07317-001-v05.pdf
https://github.com/PointCloudLibrary/pcl

Bibliography

[58] G. Bradski Dr. Dobb’s Journal of Software Tools, 2000.

[59] OpenCV: Open Source Computer Vision Library. https://github.com/Itseez/op
encv, Accessed: 2016-01-16.

[60] K. Yamaguchi, js-segment-annotator. Sendai, 2015. https://github.com/kyama
gu/js-segment-annotator, Accessed: 2015-12-16.

[61] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC Su-
perpixels Compared to State-of-the-art Superpixel Methods,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274 – 2282,
2012. A previous version of this article was published as a EPFL Technical
Report in 2010: http://infoscience.epfl.ch/record/149300. Supplementary
material can be found at: http://ivrg.epfl.ch/research/superpixels.

[62] P. Fankhauser, M. Bloesch, D. Rodriguez, , R. Kaestner, M. Hutter, and R. Sieg-
wart, “Kinect v2 for mobile robot navigation: Evaluation and modeling,” in
IEEE International Conference on Advanced Robotics (ICAR), 2015.

[63] R. K. Thiemo Wiedemeyer, kinect2-ros, 2015. https://github.com/ethz-asl/k
inect2-ros, Accessed: 2015-12-27.

[64] W. W. Z. Everingham, Van Gool, “The pascal visual object
classes challenge 2012 (voc2012) results.” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[65] J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba, et al., “Sun database: Large-
scale scene recognition from abbey to zoo,” in Computer vision and pattern recog-
nition (CVPR), 2010 IEEE conference on, pp. 3485–3492, IEEE, 2010.

[66] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab, “Adaptive neighbor-
hood selection for real-time surface normal estimation from organized point
cloud data using integral images,” in Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pp. 2684–2689, IEEE, 2012.

[67] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Commun. ACM, vol. 24, pp. 381–395, June 1981.

[68] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects in
context,” May 2014.

87

https://github.com/Itseez/opencv
https://github.com/Itseez/opencv
https://github.com/kyamagu/js-segment-annotator
https://github.com/kyamagu/js-segment-annotator
https://github.com/ethz-asl/kinect2-ros
https://github.com/ethz-asl/kinect2-ros

Bibliography

[69] P. Kohli, L. Ladický, and P. H. Torr, “Robust higher order potentials for enforc-
ing label consistency,” Int. J. Comput. Vision, vol. 82, pp. 302–324, May 2009.

[70] Results of ILSVRC-2014. http://image-net.org/challenges/LSVRC/2014/resu
lts, Accessed: 2016-01-19.

[71] W. Liu, A. Rabinovich, and A. C. Berg, “Parsenet: Looking wider to see better,”
June 2015.

[72] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, and T. Brox, “Learning to
generate chairs, tables and cars with convolutional networks,” Nov. 2014.

[73] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei, “What’s the point:
Semantic segmentation with point supervision,” June 2015.

[74] B. Liu and X. He, “Multiclass semantic video segmentation with object-level
active inference,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4286–4294, 2015.

[75] C. Couprie, C. Farabet, and Y. LeCun, “Causal graph-based video segmenta-
tion,” Jan. 2013.

[76] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connec-
tions for efficient neural networks,” June 2015.

[77] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep neural net-
works,” July 2015.

[78] M. D. Collins and P. Kohli, “Memory bounded deep convolutional networks,”
Dec. 2014.

[79] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing
neural networks with the hashing trick,” Apr. 2015.

[80] A. Vasilyev, “Cnn optimizations for embedded systems and fft,”

88

http://image-net.org/challenges/LSVRC/2014/results
http://image-net.org/challenges/LSVRC/2014/results

Declaration of Originality

I hereby declare that this thesis represents my original work and that I have used no
other sources except as noted by citations.

Hiermit versichere ich, diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate kenntlich gemacht zu
haben.

Stuttgart, March 12, 2016

Nicolai Harich

89

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background and Related Work
	Semantic Segmentation
	Convolutional Neural Networks
	Feed-Forward Neural Networks
	Convolutional Neural Networks
	Fully Convolutional Neural Networks

	Conditional Random Fields
	Incorporating Depth into CNNs
	Depth Encoding
	Multimodal Deep Learning

	Technical Approach
	Kinect v2
	Caffe - A Deep Learning Framework
	Robot Operating System (ROS)
	Point Cloud Library (PCL)
	Open Source Computer Vision (OpenCV)
	Image Annotation Tool

	Implementation and Results
	Data
	Evaluation
	Metrics

	On the Base Network: Model Definition and Training
	Preliminary Experiments
	Initialization Phase
	Spatial Accuracy Refinement
	Multimodal Fusion

	Final Approach

	Future Work and Conclusion
	Appendix
	Segmentation Results

	Bibliography

