
Deep image compositing in a modern
visual effects pipeline

Bachelorarbeit im Studiengang Audiovisuelle Medien
Hochschule der Medien Stuttgart

vorgelegt von
Patrick Heinen

Berlin, den 18. März 2013

Erstprüfer: Prof. Katja Schmid
Zweitprüfer: Michael Landgrebe

Matrikelnummer: 21472

Eidesstattliche Erklärung

„Hiermit versichere ich, Patrick Heinen, an Eides Statt, dass ich die
vorliegende Bachelorarbeit mit dem Titel: „Deep compositing in a modern
visual effects pipeline“ selbstständig und ohne fremde Hilfe verfasst
und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die
Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken
entnommen wurden, sind in jedem Fall unter Angabe der Quelle kenntlich
gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer Form als
Prüfungsleistung vorgelegt worden.

Ich habe die Bedeutung der eidesstattlichen Versicherung und die
prüfungsrechtlichen Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 23
Abs. 2 Bachelor-SPO (7 Semester) bzw. § 19 Abs. 2 Master-SPO der HdM)
sowie die strafrechtlichen Folgen (gem. § 156 StGB) einer unrichtigen oder
unvollständigen eidesstattlichen Versicherung zur Kenntnis genommen.“

Ort, Datum Unterschrift

Abstract in English

With the increasing use of visual effects in feature films, TV series and
commercials, flexibility becomes essential to create astonishing pictures
while meeting tight production schedules.
Deep image compositing introduces new possibilities that increase
flexibility and solve old problems of depth based compositing.
The following thesis gives an introduction to deep image compositing,
illustrating its power and analyzing its use in a modern visual effects
pipeline.

Abstract auf Deutsch

Mit wachsenden Einsatz von Visual Effects in Spielfilmen, Fernseh
serien und Werbung wird Flexibilität zu einem essenziellen Faktor um
weiterhin beeindruckende Bilder zu kreiren und dabei enge Produktions
Zeitpläne einzuhalten. Deep Image Compositing eröffnet neue
Möglichkeiten, welche die Flexibilität erhöhen und alte Probleme von
tiefenbasiertem Compositing lösen.
In dieser Arbeit wird eine Einführung in Deep Image Compositing
gegeben, seine Stärken aufgezeigt und sein Einsatz in einer modernen
Visual Effects Pipeline untersucht.

Contents

Eidesstattliche Erklärung� 2
Abstract in English� 3
Abstract auf Deutsch� 3
Motivation� 7
Disclaimer� 9
Definitions� 9
Target Audience� 9
1  What is Deep Compositing?� 10
2  Comparison to traditional concepts� 12

zMerge� 13
Preserving color values/corresponding to zCrop/zSlice� 15
Volumetrics� 16
What it can‘t do� 17

3  Implementation� 19
Autodesk 3ds Max and Chaos Group‘s VRay� 19
The Foundry‘s Nuke� 21

4  Performance� 31
File size� 32
Processor and memory usage� 35
Network� 40
Compression� 45
Compression� 47

5  The visual effects pipeline� 48
6  Workflows� 52

Proxies - an essential concept for dealing with large data sets� 52
Region of interest� 53
When to use deep images� 54
Integration of live action with computer generated deep images� 54

7  Outlook� 56
Deep Object IDs� 56
Vector blur that works for overlapping objects� 57
Altering the look of volumetric renderings in compositing� 59
Volume fog in Comp� 60
Light interaction� 61
Building a deep image library� 61
Stereo� 62

8  Conclusion� 65
Acknowledgments� 66
Appendix A – References� 67
Appendix B – List of Figures� 68
Appendix C – Nuke bug list� 70
Appendix D – Content of the DVD� 71

7

Motivation

In computer graphics when rendering images from 3D software, one
ends up with a temporal flow of two-dimensional images. These are
usually further treated in compositing to achieve the desired final look.
In compositing it can, however, be useful to have more information than
the afore mentioned information in x and y. More precisely, the needed
information to composit or alter elements in the right way or to achieve
certain effects is information on the third dimension, the depth, also
referred to as z.
This information is already used in the 3D application for the rendering
of the picture and should therefore be fairly easily retrieved and handed
over to compositing. Existing concepts and methods already use this so
called “zBuffer” and render it into a separate channel or image mostly
referred to as zDepth.
Due to the conceptual nature of an image as a two-dimensional array of
(color) values, the depth information stored is not accurate enough and
often leads to problematic edge artefacts. As for volumetric imagery, depth
throughout the volume can not be represented by traditional methods,
and thus does not allow for further depth based operations on it.

The concept of deep compositing has two primary ways to face the afore
mentioned problems:

For volumetrics, occluding objects placed inside the volume usually
needed to be rendered with holdout mattes1. An animation change meant
the need to also re-render the volumetric and therefore led to higher
render times and thus a longer turn around time. Deep compositing is
facing this problem with a more flexible solution.

In addition, every z based compositing operation which relies on
the traditional zDepth channel faces some fairly big trade-offs and
usually results in edge artefacts. Due to the inability to accurately store
differentiated depth information in overlapping semitransparent areas,
good results were sometimes impossible to achieve, depending on the
exact case. Motion-blurred renderings, where a fairly big amount of
transparent edges occur, were nearly impossible to use with traditional
z based compositing operations. Tackling this issue is one of the most
fundamental aims of deep compositing.

1		 c.f. Bugaj, S. V. in Okun & Zwerman. 2010. p. 822

8

﻿

 The following thesis is going to concentrate on the use of deep compositing
in the visual effects industry. Similar concepts might also be used in
medical technology or for industrial assembly purposes. Due to the
different needs I‘m going to concentrate on high end visual effects work.
With growing use of visual effects in feature films, commercials and
other media formats, quick turnarounds and tight production schedules
go hand in hand with last minute change orders and tight budgets.
For a visual effects company, it is vital to have flexible structures and
a pipeline supporting quick changes and adaptions. As rendering is
one of the main time critical factors, re-rendering should be avoided
wherever possible. Rendering times are much higher for 3D renderings2.
Thus, giving compositing the power to change aspects of the rendering
afterwards helps to quickly adjust for changes. This concept is already
largely adopted3. With multi pass renderings and additional utility passes,
compositing artists can quickly alter shading and lighting and achieve
computationally expensive operations such as motion blur or depth
of field after the rendering. Deep compositing embraces this concept of
providing additional information to the compositing department and
pushes it even further.

Delving deeper into deep compositing reveals even more possibilities. The
logical conclusion of which is a combination of deep compositing with
other already existing techniques in the visual effects industry.

In the following document I am going to investigate the use of deep
compositing in a modern visual effects pipeline. To start off, I will give
an insight into the basic concept behind deep compositing. I will then
compare it to traditional concepts like the zDepth pass and holdout mattes.
I will illustrate these with some examples, showing the advantages of
deep compositing over existing methods. Further, the implementation in
Nuke and VRay/3ds Max will be explained. This will lead us to another
important point for the real life use of deep images, their performance
in a production infrastructure. This will lead to a look at real production
necessities in terms of tools and workflow. To finish off, I will give an
outlook on what else deep compositing could theoretically allow for and
what I think would be the logical technical conclusion.
To conclude, I will summarize the important points to keep in mind when
working with deep images and give a personal recommendation.
2		 c.f. Spears, D. in Okun & Zwerman. 2010. p. 685 f.
3	 c.f. Spears, D. in Okun & Zwerman. 2010. p. 686

z9

﻿

Disclaimer

As this is an emerging technology, the information provided in this
document is bound to the current state of the technology. As changes will
evolve regularly and will, in the next few months, greatly improve the use
of this technology, some of the given information will be out of date and
therefore not reflecting the possibilities that may arise with new releases
of the discussed software packages.

Definitions

For ease of use, I will employ some terms and abbreviations in the following
work. Transparency or the transparency channel will be referred to as
alpha or alpha channel. Red, green and blue channels or information will
be abbreviated as r,g,b or rgb. In the usual combination of rgb and alpha
those will be referred to as rgba. Visual Effects will also be referred to as
VFX.
The files used in deep compositing will be called deep images or deep pixel
images. Two-dimensional images in contrast will be called “flat images”
or “traditional images”.
Any matrices used throughout this document will be column-major.
The coordinate system referred to corresponds to the one used in Nuke
with the y-axis pointing up and z-axis pointing into the image plane.
Any Performance graphs are sampled with an interval of one second
and time is represented on the x-axis. The term voxel describes the three-
dimensional equivalent to a pixel.

Target Audience

This thesis targets a visual effects professional. The reader should have a
basic understanding of the visual effects industry, common techniques,
node based compositing and fundamental computer graphic principles.
The work is aimed at persons that evaluate the possibility of using deep
compositing in a production workflow. It tries to give a fundamental
introduction as well as a look into the challenges and draw backs of this
new technology. This document should be considered as a guide to help
with the decision of whether or not to use deep compositing.

What is Deep Compositing

10

1  What is Deep Compositing?

The principle concept of deep image compositing is to store multiple
sample values per pixel. Instead of having a single sample of red green
blue and transparency values per pixel, deep compositing has a rgb and
alpha value per pixel and per depth sample. Every pixel can store an
arbitrary number of depth samples.
This concept of storing multiple samples per pixel isn‘t new to the world
of computer graphics. It has been used since 2001 as Pixar‘s Deep Shadow
Maps4 allowing for shadowing of semitransparent objects like fur or fog.

In the paper „Deep Compositing“5 the concept of deep shadow maps is
transferred to compositing. Instead of using light space shadow maps, the
transparency function is calculated from camera space.

Deep Shadow Maps result from a transmittance function per pixel over
the depth. The transmittance function is calculated as a sum of surface
and volume transmittance functions. For the surface transmittance
functions, a sample is generated each time a ray intersects a surface. Once
a ray hits an opaque surface, it doesn‘t continue; therefore, no other deep
sample will be generated.6

4	 c.f. Lokovic, T. and Veach, E. 2000.
5		 Heckenberg, D., Saam, J., Doncaster, C., Cooper, C. 2010.
6 	 c.f. Lokovic, T. and Veach, E 2000.

Figure 1:	 An illustration of the sample gathering proess

11

For the purpose of compositing, a definition that matches existing
standards is useful. Therefore, instead of using a “transmittance function“,
an “opacity function“ is used, relating to the opacity in an alpha channel.
The resulting samples are stored as discrete values in a three-dimensional
array permitting an easier retrieval than a function based approach.

Once the ray tracing/ray marching algorithm stops, either due to a
maximal transparency depth, maximal ray sample or a transparency cut
of value, no other deep sample will be generated. Therefore, a classical
rendering engine will not render any occluded samples at all. In most cases
this is exactly what is desired. Still, there are use cases that could require,
or would benefit from, occluded information. For example, a deep motion
blur/vector blur, that improves by far the quality of a post render motion
blur with overlapping objects. I will get back to this topic in chapter 7.

A differentiation has to be made between the two use cases of
volumetric and non-volumetric renderings. Non-volumetric renderings
are represented as surfaces that have no volume. In contrast volumes
expand in depth and to accommodate this, it is necessary to introduce a
front and a back depth representing this volume. If a sample has a front
depth z<ZBack, the sample is considered volumetric. The opacity between
front and back depth is said to be constant. If two samples that need
to be combined overlap, a sub-sample has to be created using the Beer-
Lambert‘s equation7. It describes the absorption of light traveling through
an absorbing material as:

A0 = 1� (1�A)
d�z

ZBack�z

with A‘ being the new opacity, A being the old opacity, d the split point of
the subsample, z the front depth of the volumetric sample and ZBack the

back depth.

7		 c.f. Kainz, F., and Bogart, R. 2011. p. 17

Comparison to traditional concepts

12

2  Comparison to traditional concepts

Traditional z-based compositing operations are fairly limited in their use.
This has one simple reason. They don‘t account for transparency.
In a zDepth pass resulting from a render engine‘s depth buffer, the distance
from the camera is represented as a greyscale image. Thus, floating point
or integer values, that are often scaled to accommodate scene scale and
limits. Since integer values heavily delimit the precision of the stored
information, they are outdated and hopefully not used by anybody for
storage of depth values. Scaled, normalized values have the advantage
of visibly showing the whole range of values. But they depend on some
reference; hence, they do not represent the same scale as the scene they
originate from, making it difficult to judge real distances.
One big problem occurs when filtering the z channel. The greyscale values
are averaged in some way or another, consequently distorting the depth
value8. An edge pixel of object A with depth value 1 and a background
object B with depth value 0 will result in a depth value of 0.5, hence lying

halfway between object A and B in depth, which is definitely wrong.
Manipulating the depth channel in any way, be it by anti-aliasing, motion
blur, colorspaces or a simple blur, will falsify the depth information and
thus produce wrong results, which often become visible as edge artefacts.
But even when preserving the original depth information, there are still
problems. Fine detailed geometry is even less accurate when unfiltered
and will still result in edge artefacts most of the time.
In deep images, every sample has a different rgba sample per depth.
Hence, all objects can be clearly separated from each other. No samples
are averaged or added together at all. To display the image in a traditional
two-dimensional way, this needs to be done. Adding the premultiplied

8		 c.f. Spears, D. in Okun & Zwerman. 2010. 2010. p.689

Figure 2:	 Antialiased(left) and aliased(right) edge

zMerge

13

pixel samples along the depth results in a two-dimensional image equal
to a traditional render.
Classic depth operators are zMerge, zBlur, and a z based color correction.
In the following, we will look at some examples that are pushing the
boundaries of those traditional depth operators.

zMerge

The idea behind the zMerge is a simple one. Instead of having to deal
with the layering order of different elements, the elements are arranged
dependent on their position in depth. This is especially useful when
dealing with a lot of elements which cross each other dynamically and
thus occlude each other dynamically. For example, a flock of birds flying
through a tree. A traditional merge-over only works if rendered with

holdout mattes or turning masks on and off. A depth based approach allows
for much easier use, sorting the layering and occlusions automatically.
In theory, this sounds like a game changer. But, due to the limitations of
traditional z channels mentioned above, the results can have unpleasant
edge artefacts.

In the case of a filtered z channel, one gets falsified depth values.

Figure 3:	 zMerge: Merge of a) and b), 	
c) unfiltered, d) filtered, 		
e) DeepMerge

a) b)

c) d)

e)

Comparison to traditional concepts

14

Consequently, semitransparent parts of the image suddenly disappear
behind something else, as the depth value is inferior to the background.
Using the unfiltered depth channel resolves that problem. But fine detail
such as the fur in Figure 3 gets rough, as the unfiltered z channel is not
accurate enough.

Zblur

To mimic the look of
a real life camera, a
vital element is depth
of field. Depth of
field can be rendered
physically correct in
the rendering engine,
producing very good
results. However,
adding depth of
field usually greatly
increases render
times. To avoid this,
and to gain more
flexibility over the
look, depth of field
is often achieved in
compositing, using
the z channel to
drive a convolution
mimicking depth of
field. This produces
fairly good results;
but again, we will
get incorrect results
in semitransparent
highly detailed areas,
leading to glowing edges. With the use of deep compositing and the
right tools, the depth differentiated opacity information can be used to
produce accurate and artefact-free depth of field in compositing. Figure
4 shows the differences for similar depth of field using Nuke‘s built in

Figure 4:	 a) zBlur b) Frischluft c) Bokeh

a)

b)

c)

Preserving color values/corresponding to zCrop/zSlice

15

zBlur, Frischluft Lenscare (that is often mentioned as the solution to edge
artefacts) and Peregrine Bokeh (being the only one that uses deep data). It
is clearly visible that only Peregrine Bokeh is preserving the detail in the
fur. The other tools, relying only on the zDepth channel, produce glowing
with an anti-aliased zDepth channel or chunky edges without anti-
aliasing. This contamination of depth information is also true for motion
blur. Theoretically, deep images also allow for both depth of field and
motion blur produced in compositing as the convolution happens depth
independent and therefore preserves accurate depth information. Yet the
tools to do this don‘t exist for the moment. Peregrine Bokeh outputs a flat
image and not deep data.

Preserving color values/corresponding to zCrop/zSlice

In a traditional image, on semitransparent pixels where two objects
overlap, the two color values are added together, weighted by the
transparency. Therefore, isolating one element is nearly impossible; it
will always have the color values of the other object in the edge pixels.
This might be acceptable in certain cases, but, with an increasing
number of semi-transparent pixels, the result becomes more and more
visually unpleasing. With deep images this problem does not exist as
every pixel has a unique value per depth. The weighted average of the
pixel only has to be calculated once the image gets flattened, that is to
say, converted to a traditional two-dimensional image. Thus, one gains a
high amount of flexibility, gaining the ability to cleanly isolate elements

Figure 5:	 a) deep rgba b) deep alpha c) zDepth
a) b) c)

Comparison to traditional concepts

16

that overlap. Figure 5 shows the differences of deep rgba, deep alpha and
traditional zDepth in a point representation. The motion blurred area
has differentiated color values only using deep rgba. The traditional anti-
aliased zDepth channel produces, as mentioned before, incorrect depth
values. The differentiation of color in depth also leads to the possibility of
using a multitude of object IDs in a single channel. I will get back again to

this later in chapter 7.
This is, of course, not true for refractions, as the refracting material will
get the color of what gets refracted, and has in itself no real color.(Figure 6)

Volumetrics

Volumetric effects is where deep compositing comes in really handy.
Combining volumetrics with other elements in a traditional workflow
would require having the volumetrics rendered with the other objects
with a black material applied. The result is a volume with holes in it where
the elements are in front of it. The problem with rendering holdout mattes
is, that every change in animation or staging of the elements means
having to re-render the volumetric element as well. As rendering time is
critical, avoiding this improves turnaround and and the time needed for
changes a lot.
With deep compositing one has rgba values for each pixel at each depth
step. Therefore, a volumetric is fully described in a deep image. The
complete holdout process can then be outsourced to compositing where
a simple DeepMerge checks which sample is in front of which. The
flexibility permits tweaking positions in compositing and dropping in
new, or deleting unnecessary, elements as desired.
This is true for live action plate elements as well. Those can be converted
to a deep image, naturally only having a single depth sample, as there

Figure 6:	 A refracting object with the backgrond cropped

What it can‘t do

17

is no additional information. This can then either be merged or used to
generate a holdout.
Another advantage is the capability to combine the output of two separate
render engines. When rendering the volumetric effect with one renderer
and rendering the object placed in the volume in another renderer, the
holdout matte would not match 100%. This is caused by the different filter
kernels used in the different render engines. As the holdout mattes can be
generated in compositing with deep images, this problem is solved.

What it can‘t do

The above is, however, not possible in every situation. It does not apply to
any interactional changes. If the element affects the volume‘s simulation,

then this, of
course, has to be
resimulated and
re-rendered. The
same applies to
lighting changes
which normally
require a re-
r e n d e r i n g .

Nevertheless, there are possibilities to avoid re-rendering everything
because of a lighting change. I will cover this as well as other interesting
possibilities that deep images bring for volumetric handling in chapter 7.

Figure 8:	 removing the object in a) reveals a hole(b)

Figure 7:	 Teapots(a) get merged with fog (c) traditional holdout(b), d) and e) show
the possibility to rearrange in compositing

a) b) c)

e)

a) b)

Comparison to traditional concepts

18

The structure of multiple samples per pixel might create the impression
that one could simply delete a foreground object revealing what is behind.
This is wrong. As the sampling stops at an opaque surface, removing a
foreground object will only reveal a hole in the background wherever
the foreground object was opaque (see Figure 8). Yet, this is theoretically
possible and will be further examined in chapter 7 in combination with

the afore mentioned possibilities of a deep image based motion blur.
Another problematic situation that deep images can not resolve is
intersecting objects. Even though the depth of the different pixels is
known and will be interleaved correctly, the edge will be hard and not
anti-aliased. The pixel samples inside an object will most likely have an
alpha value of 1 and consequently won‘t produce any blended edge.
At the moment, another constraint for the use of deep images exists.
World space masking or cropping, as used with a world position pass, is
not yet possible. The world position pass basically saves world coordinates
x y z in the three color channels r g b. With that it allows masking certain
parts of an image by selecting specific colors, hence areas, in 3D space.
As the masks are expressed in world coordinates, they are consistent
throughout different camera angles. I will get back to this in chapter 7 as

well, pointing to solutions and further applications.

Figure 10:	 A world position pass(left) and a matte created from it (right)

Figure 9:	 merging the cubes left and right produces a rough
edge (middle)

Autodesk 3ds Max and Chaos Group‘s VRay

19

3  Implementation

Being such a new Technology, deep data is not yet broadly supported by
software packages. As deep images are derived from Pixar‘s Deep Shadow
Maps, Renderman was one of the first renderers being able to write deep
images in the dtex format. Houdini, with its Mantra renderer, is also
capable of rendering deep images in its rat format. Chaos Group‘s VRay
has announced deep image support in the next release. The functions are
already implemented and are being deployed privately through nightly
builds. On the compositing side, The Foundry‘s Nuke is the sole solution
supporting deep images at the moment.
The biggest issue for a long time has been a common file format. Nuke
was only supporting the dtex format prior to version 7. Now, the already
broadly used Open EXR file format has been extended to support
deep images. Even though it is not yet released and is still in beta, it is
already supported by Nuke. With this standard set, software vendors
will hopefully soon converge to this new file format and deep image
support will come to more and more products, therefore gaining broad
awareness and application, leading to an improvement of the tool-set and
implementation.
In the following I am going to concentrate on Nuke on the compositing
side and on Chaos Group‘s VRay for 3ds Max. Nuke is certainly the
standard compositing package at the moment and the first and only one
supporting deep image data. VRay is a very advanced renderer which is
used more and more across the industry. This combination of VRay and
Nuke is definitely a powerful one, gaining even more flexibility through
the use of deep images.

Autodesk 3ds Max and Chaos Group‘s VRay

At the moment, deep compositing is not yet officially supported. However,
it can be used with the latest nightly build in combination with the VRay
Stereoscopic helper plugin. VRay already used “shademaps” that saved
precalculated images with multiple samples per pixel. This was then
used to speed up the calculation of otherwise computationally intense
operations such as motion blur, depth of field as well as for rendering the
second view in a stereoscopic project.
The stereoscopic helper has since been extended to save deep pixel
shademaps that correspond to a deep image. VRay‘s deep shademaps

Implementation

20

are saved in the proprietary VRay Shademap
format *.vrst but can also be rendered as deep
Open EXR 2.0. Additionally, a deep-vrst-reader
plugin for Nuke and a vrst to Open EXR 2.0
command line converter are provided.
VRay Shademaps are using a zlib compression,
there is no plan to implement other
compression algorithms. The compression is
applied per render bucket. This is unavoidable
as the file needs to be written bucket by bucket.
Otherwise, huge files would need to be cached
in ram during rendering of the whole frame.
Avoiding that brings down the memory usage
during rendering tremendously.
Deep images are rendered with linear gamma
only, there is also no other possibility for
further settings.
VRay does support render elements for
deep images. This opens up completely new
possibilities for look development and, with
optional deep utility render passes, even more
possibilities for post rendering tweaks and
effects without the negative side effects and
artefacts mentionend in Chapter 2.
At the moment, volumetric renderings are

only supported for Chaos Group‘s own fluid dynamics tool-set Phoenix FD.
This is due to the necessity of a geometry shader in order to render deep
shademaps. To render Phoenix fluids to a deep image file in VRay one has
to enable the geometry mode for the fluid simulation under the rendering
tab. Naturally, one will also need to check the maximal transparency
levels in the rendering->Global switches tab. This delimits the maximum
amount of samples a ray traverses before the calculation stops. Setting
these too low will result in not getting to the volume itself in the worst
case. A rough approximation can be done by dividing the box size by the
cell size.
Other factors influencing the amount of depth samples and the way they
are sampled, are the step size and the cell and box size. The step size can
be seen as a sample rate for the fluid rendering. With a higher value, the
samples are further apart, therefore resulting in fewer samples. This will

Figure 11:	 settings for the
stereoscopic
helper

The Foundry‘s Nuke

21

not only influence the amount of deep samples generated but also the way
the fluid is sampled. And, consequently, the quality of the fluid rendering
decreases with increasing step size.
Unfortunately, the current version 2.0 of Phoenix FD has a bug. It causes
the resulting deep images to have black rgba samples throughout the
whole fluid container and not just for the actual fluid itself. This greatly
increases the number of samples and is clearly reflected in a higher file
size. This will most likely be fixed in the next version, though.

The Foundry‘s Nuke

Nuke has been supporting deep images since version 6.3, having
implemented WETA Digital‘s tool-set. Prior to version 7, the only supported
file format was Renderman‘s dtex file format.
Nuke has different operator types, image operators(IOps), geometry
operators(GeoOps), particle operators, and deep operators(DeepOp)9. This
is important to understand, since due to the three-dimensional nature of
the deep image files, there are two independent worlds inside Nuke. One
is the dedicated deep operators which handle similar operations as the
classical two-dimensional image operators. These have to be used and
can not be substituted by their two-dimensional relatives. Still, there‘s
a way of exchanging data from one world to another. The DeepToImage
node basically flattens the deep image to a two-dimensional image with
only one single value per pixel. All premultiplied samples along the depth
of a pixel are accumulated to a single value, resulting in a traditionally
known image. The option “volumetric composition” defines whether the
deep.back values get used for the merging process or not.
In contrast, DeepFromImage takes a two-dimensional image and converts
it to a deep image, naturally only with a single depth sample. Depth is
extracted either from an existing zDepth channel or from a uniformly
specified depth. Very similar is DeepFromFrames, the difference being
that it samples the input at multiple frames and places them at various
depths, building a volume. Each frame can be seen as a depth slice. The
maximum and the minimal depth can be set and sample frames are
placed in between those boundaries. With the combination of animated
noise and DeepFromFrames, one can easily build a varying volume fog.
There is a fourth node that connects an IOp with DeepOps: the DeepRecolor

9		 c.f Harvey, V., Brady, A., Ring, D., Binks, J., Wadelton, J., Hughes,
M. 2013.

Implementation

22

node. It uses a flat image‘s color values and takes only the depth values
from an existing deep image. The resulting deep image will have several
depth samples if the deep image that was input has multiple depth
samples. However, the color values will be the same at every depth, i.e.,
an averaged color of the overlapping objects. This makes sense, as they
originate from a two-dimensional image. The result can be seen as a deep
alpha instead of a deep rgba image. I would therefore discourage using
the DeepRecolor to simply transform flat images to deep images, as it
constitutes less information than a full deep image rendering and doesn‘t
tap the full potential of a deep image compositing workflow. The great
advantage of deep compositing is actually the clear separation of values
from different objects and thus depths.
Operators which only take a deep input and return a deep image as the
result are called DeepOnly operators.
Most of the DeepOnly operators are very much a deep implementation
of their two-dimensional relatives, making use of the additional depth
information. To begin with, there is DeepReformat that acts exactly like
its two-dimensional counterpart and reformats an image to a new format,
scale or box with the possibility of resizing it.
DeepCrop allows cropping a deep image not only to a certain region in
x and y but allows cropping it in depth as well. Additionally, it gives the
option to crop either the inside or the outside of the defined region.
DeepTransform is a very simple implementation of its two-dimensional
relative, allowing for translation in x,y and z only, as well as scale in z.
This is understandable as any operation that would break the structure
of the three-dimensional raster, e.g. rotation, would result in need for
interpolation. Consequently, the information would be falsified. Since
most of these transforms don‘t need the additional depth information,
they can easily be applied once the deep image is transferred back to a flat

Figure 12:	 Point representation of a cube(left) and the same with
DeepTransform with noise as mask applied(right)

The Foundry‘s Nuke

23

image. DeepTransform also offers the possibility of using a mask on the
z based operations. This can be very useful, as it allows to quickly push
back or pull out specific areas which should rather be in front of/behind
a particular object. Furthermore, using a noise can provide additional
irregularity (c.f. Figure 12).
Another tool in Nuke‘s deep compositing tool set is DeepColorCorrect.
Like its two-dimensional counterpart, it allows for all the known color
correction parameters – including separate correction of highlights,

shadows and mid tones. Using the zmap knob in the Masking tab, the
color correction can be limited to a specific depth. Moreover as deep
images save one sample for every depth per pixel the color correction
is differentiated in depth. It opens the possibility to treat every single
pixel and every single depth on its own. As color correction is one of
the basic operations in compositing, this is a vital operator that can be
used for different purposes when dealing with channels other than rgb.
Unfortunately, the DeepColorCorrect doesn‘t have a mask input.
The DeepExpression node is very powerful, as it allows manipulating the
image using expressions. Unfortunately, it doesn‘t use the exact same
syntax as the 2D Expression node and lacks many of the mathematical
expressions known from its 2D counterpart. I‘ll get back to this later in
this chapter.
Apart from manipulating images, compositors also need to combine

Figure 13:	 Result of a DeepColorCorrect restricted to a specific depth slice

Implementation

24

different images. The same is true for deep images, of course. Nuke offers
two different options. The first is DeepMerge. It has two different modes.
In “combine“ mode, the different depth samples are interleaved according
to their particular depth value. If two depth samples have the same depth,
they are both written to the resulting deep image. The order in which they
are interleaved is then deducted by the input order on the node with B
being the first input. Enabling “drop hidden samples” will delete samples
that are behind a fully opaque sample. This can be useful to reduce the
data that has to be processed further down the tree.
The “holdout“ mode produces a held out deep image. The way it works is
to subtract the alpha of input A from the alpha of input B. Samples that
have an alpha inferior or equal to 0 are deleted and the color channels
premultiplied with the resulting alpha values.
The holdout operation also exists as individual node. The difference to the
DeepMerge is that it outputs a flat image instead of a deep image.

In contrast to traditional zDepth passes which can be visualized as a
simple grayscale image, this is difficult for deep images. Visualizing them
as a single grayscale image would not be able to show all the information.
That’s why Nuke has two nodes exclusively dedicated to the visualization
of the information comprised in a deep image. One very intuitive way
of visualizing this information is the DeepToPoints node. It displays the
deep image as a point cloud, where every depth sample is represented as
one point in space in its respective color. Unfortunately, the transparency
does not get considered. This does help to make all samples clearly visible
though. The node requires the input of the corresponding camera as
this information is needed to calculate the absolute position in three-
dimensional space. In a simplified approach, an image can be viewed as
a representation of the world where the camera, placed at the origin, is

Figure 14:	 Output of the DeepToPoints node

The Foundry‘s Nuke

25

not moving; instead, the content is moving. This representation needs to
be translated back to world-space where the objects stand still and the
camera is moving.
The mathematical relationship between a three-dimensional object
and its mapping onto an image plane can be described with the model
of an ideal pinhole camera. The ideal pinhole camera is the most basic
representation of a photographic image. Although the image is affected
by the different optical lens elements in the real world, this is most of
the time neglected in computer graphics, as those effects are either very
small or can be recreated afterwards. The model of the pinhole camera is
based on the perspective projection which maps object points in three-
dimensional space onto a two-dimensional plane. The light ray travels
from the object point to the projection center. The mapping onto the
image plane takes place at the point of intersection between this ray and
the image plane. In photography the image plane, this being the film
or the sensor, lies behind the projection center, which is the focal point
of the lens. Therefore, the rays are extended and the resulting image is

z

x
x‘

d

aperture

FOV
focal

Figure 15:	 Relations between points in 3D space and their projection onto a 2D
plane

Implementation

26

upside down. For camera simulation in computer graphics, this can be
simplified by placing the image plane in front of the projection center.
The camera model is described by three intrinsic parameters and six
extrinsic parameters, defining its location and orientation in 3D space.
The six extrinsic parameters defining the camera’s location in space are
the three translations in x,y and z and the three rotations around x,y and
z. The intrinsic parameters are the field of view (fov) and the dimensions
of the image plane in x and y as well as, if the depth information needs to
be preserved, the near and far clipping planes. With these parameters, a
camera projection matrix can be built10.

The above illustration (Figure 15) shows a schematic of the geometrical
relation between a point in three-dimensional space and its mapping
onto an image plane. We look onto the scene parallel to the xz-plane. To
calculate the new dimensions x‘ that x gets projected onto, we only have
to follow the rule of similar triangles:

x0

d
=

x

z

As we want to map our coordinates to normalized device coordinates we
get d as:

d = tan

✓
fov

2

◆

This leads to:

x0 =
x

z · tan
⇣

fov

2

⌘

The same applies to the y-axis:

y0 =
y

z · tan
⇣

fov

2

⌘

10		 c.f. Akenie-Möller, T., Haines, E.,Hoffman, N. 2008. p 92 ff.

The Foundry‘s Nuke

27

With this, the projection is defined. However, one wants to express
this as a matrix. To express any transformation in computer graphics,
homogeneous coordinates are used. This essentially adds a fourth row to
the matrix to allow for scaling and translation with a single matrix. Instead
of having just x,y and z one gets x,y,z and w. To transform homogeneous
coordinates back to cartesian coordinates, x,y and z have to be divided by
w. For projection, this is very convenient as we need to divide everything
by z. As everything gets divided by w, one has only to make sure that the
value of z ends up in w. The projection matrix will therefore be:

2

6664

1

tan(fov
2)

0 0 0

0 1

tan(fov
2)

0 0

0 0 0 0
0 0 �1 0

3

7775

Yet, we loose our z information. Therefore, we need to find a way of
including the normalized z value as well. We know that the far clipping
plane should be mapped to -1 and the near clipping plane to +1.

z0 = a · z + b

with
 �1 = a · zFar + b
and
 1 = a · zNear + b

Our final term is:

z0 =
zFar + zNear

zFar � zNear
· 2 · zNear · zFar

zNear � zFar

Combining this leads to the following projection matrix:

2

6664

1

tan(fov
2)

0 0 0

0 1

tan(fov
2)

0 0

0 0 zFar+zNear

zFar�zNear

2 · zNear·zFar

zNear�zFar

0 0 �1 0

3

7775

Implementation

28

This gives the normalized camera coordinates and assumes that the
camera is located in the origin. To get screen space coordinates of a camera
anywhere in space, what we need, is to consider the camera transformation
(derived by the extrinsic parameters), to scale the coordinates to pixel
coordinates and to account for the aspect ratio. This can be expressed as a
series of matrix multiplications.

The second node to visualize deep data is the DeepSample node which
shows a list of all depth samples of a chosen pixel and their values in a list
view. This allows one to get the exact values and see what exactly is going
on numerically. In addition, it shows the minimal and maximal z value
as well as the sample depth (amount of samples) for that pixel. It is a very
valuable node for trouble shooting as the values can be compared and the
operations reproduced.
Another useful tool that, unfortunately, isn‘t part of the Nuke tool-set is
DeepSampleCount. However, the source code is available in The Foundry‘s
NDK Dev Guide. It writes the sample depth per pixel into a traditional
image which makes it easy to see the repartition of sample depth over the
whole image.
It is also possible to pick pixel values in the viewer. The corresponding
depth values are shown in the depth graph in the viewer window. The
depth graph shows the alpha value as a function of depth. This is a good
way to quickly get an image of the depth development (Figure 17).

Figure 16:	 Control panel of the DeepSample node

The Foundry‘s Nuke

29

Figure 17:	 Depth graph with a single pixel sampled (top) and a region sampled
(bottom)

As of today, there are still a lot of issues with Nuke‘s deep compositing tool
set. A full list of filed bugs and their corresponding IDs can be found in the
appendix.
One field that is missing a lot of functionality is the way to interact with
deep compositing nodes via Python. The functions node.width() and
node.height() return the root format rather than the format of the actual
image stream. This poses rather big problems when trying to extend
the functionality of the tool-set, as the format is always needed when
trying to sample over an image. Information on width and height is also
necessary to deduct screen space relations. Another function that is vital
to integrate a custom extension of the tool-set is node.channels() which
returns an empty list for deep images.
Furthermore, the file handling of deep image files is not yet completely
thought-out. Open EXR 2.0 is only supported for deep images and not
for traditional images. In addition, Nuke does not recognize whether an
EXR file is a deep image or not – thus one has to choose files through the
specific node instead of drag-and-dropping or using keyboard shortcuts.
One solution to avoid this issue is using a separate file extension(.odz) as
proposed in „Technical Introduction to Open EXR“11. When comparing the
deep read node to the traditional read node, the lack of a colorspace knob
is apparent. Even if it is recommended to always render an image with
a linear gamma, which also holds true for deep images, there are still
cases where the image has another gamma and needs to be transferred
to a linear gamma in order to work inside Nuke. The lack of several color
related functions raises the question whether colored deep images are
used in production at all right now.
A big issue for building custom tools is the lacking functionality of the
DeepExpression node. A lot of the functions available in the traditional

11		 c.f. Kainz, F., and Bogart, R. 2011. p. 9

Implementation

30

expression node do not work in the DeepExpression node. Further, more
complex expressions are not evaluated correctly. It should also incorporate
depth specific functions as sampleDepth, zmin and zmax. This restricts
the use of this otherwise very useful node considerably.
Another problem is posed by the not fully supported bounding box. This
leads to distorted point clouds, when using DeepToPoints. DeepToPoints
uses the bounding box as format and not the format itself which leads to
a totally wrong representation of the points in three-dimensional space.
To avoid this, a crop node can be used, resetting the bounding box to the

whole image.

Figure 18:	 The distorted result of DeepToPoints (left) and the correct
result (right)

31

4  Performance

A new technique might bring big advantages, but is it reliable enough
for production use and does it work in a day-to-day routine? One of the
key factors in answering these questions is the infrastructure. Is it ready
for the new technique or does it need to be adapted to accommodate a
flawless use of such a game changer.
Image processing is still one of the most computationally intense
operations. Hence, visual effects facilities are remarkably always
employing state of the art technology and hardware in order to build a
high performance infrastructure, able to handle big amounts of image
data in the shortest processing times possible. On the other hand, they
are trying to achieve this goal with a minimal budget to stay competitive.
Still, the resource hungry simulations, renderings and compositing
operations always push the existing infrastructures to their limits in the
quest of producing steadily increasingly astonishing pictures.
A new technology can only be employed if the infrastructure allows for a
fluent way to use it. This is also true for my goal of judging the production
readiness of deep compositing.

There are different hardware components that are being used to deal
with image data in a visual effects infrastructure. Most important are the
processors themselves which have to deal with most of the calculations for
each pixel and the memory, as a fast storage for image data, which enables,
for example, real time playback or caching of data that is continuously
written to disk. As visual effects depend heavily on collaborative work,
most of the data is stored on a central server and has to be moved from and
to the server from the workstations12. Furthermore, hard disks, as storage
for all the data, are a very important factor as well. Graphics cards become
more and more important for real time visualization and for heavily
parallelized computations. However, as they are not yet commonly used
for rendering or compositing purposes, I will not count them as core
important hardware components.

12		 c.f. Novy, D. in Okun & Zwerman. 2010. p. 807

Performance

32

This leads to the following important performance indicators for a deep
compositing workflow:

•file size
•processor usage
•memory usage
•network load

File size

As deep images save multiple samples per pixel, one performance issue
is clearly deductible. Saving more information is directly connected to
bigger file sizes. Without compression, the relation between sample count
and file size is proportional. The chart (Figure 19) shows the relationship
between sample count and file size. The data was taken from a volumetric
rendering sampled with different step sizes and therefore the content
is approximately the same. The relation is linear. So, in general, using
deep compositing will increase file sizes. However, file size is directly
proportional to the sample count.

As different applications need a different amount of depth samples, the
performance of deep images is highly dependent on the use case and the
content of the image. A great differentiation can be made between hard
surface renderings compared to volumetric renderings.
To correctly judge the increase in file size, a look at the information stored
in the file is needed. I will consider an Open EXR 2.0 image, as this is most
likely to become the standard format for deep images. The comparison is

0 1000 2000 3000 4000 50000

200

400

600

800

1000

1200

file size in MB

samples

Figure 19:	 Relation of sample count and uncompressed filesize

File size

33

16bit

16bit

16bit

16bit

32bit

32bit

32bit

red

green

blue

alpha

deep.front

deep.back

depth samples

Figure 20:	 Bit depth of the elements
that make up an OpenEXR
2.0 deep image

based on commonly used 16 bit half float
EXR files, which contain every channel
with 16 bit floating point precision.
Most commonly, an image contains 4
components (r, g, b and a), resulting in
the use of 4 * 16 bit = 64 bit per pixel.
As compression is heavily dependent on
the image content and its redundancy,
(which I‘ll discuss later) it is not taken
into account for these calculations, to
allow for unbiased results.
With no additional information – in
other words: with a single sample
per pixel – a deep image will have an
increased file size of 96 bit per pixel
compared to a traditional image. This is
32 bit each for deep.front, deep.back as
well as the sample count13. With every
additional depth sample the file size
increases by another 128bit, 64 for rgba and 64 for deep. This means that
a 16 bit deep EXR file will have double the size of an rgba 16 bit EXR. This
seems drastic but is comparable to an additional layer in a multilayer EXR
file. A further increase of the file size is then directly proportional to the
sample count. Figure 22 shows the different parts that make up the file
size for deep images compared to traditional flat images.
Looking at different image content means that for hard surface renderings
file sizes stay relatively low, as additional samples are only introduced
through semitransparent pixels. This will, in most of the cases, be edge
pixels which are semitransparent due to anti-aliasing or motion blur. As
it is fairly unlikely that a lot of objects share the same edge pixels, the
amount of additional depth samples stays relatively low as well. Figure 21
(a) shows a fur rendering. This is one use case that has a lot of detail and,
therefore, a lot of anti-aliased semitransparent pixels and thus, a relatively
high sample count. Hair and fur might be the application that will result
in the highest sample count apart from volumetrics. Figure 21 (b) shows
all pixels which have an alpha<1, and so have additional depth samples.
This is approximately 15% of the image. The maximum sample depth is 4.
Figure 21 (c) shows the amount of depth samples per pixel, with 1 for the

13		 Thanks to Peter Pearson and Jonathan Egstad for the hint!

Performance

34

lowest level and 4 for the highest level. In total, this makes it roughly a
seventh (~15%) more samples in total as opposed to its flat relative. Figure
20 shows the different elements that contribute to the file size. Though
the increase of file size is clear and apparent, it is not alarming for non
volumetric files.
In contrast, volumetric renderings result in much bigger file sizes,
depending solely on the sample rate. As the sample rate is an arbitrary
parameter, file sizes can range from approximately the same size as
its two-dimensional sibling up to theoretically infinite size. Hence it is
very important to choose the sample rate wisely. A low sample rate will
potentially not provide enough detail for the given application yet a high
sample rate will result in large files that might be hard or impossible to
process. In this context, it becomes clear that alternative sampling models
(e.g. proxies) are needed to improve the work with large volumetric files.
These will be discussed in Chapter 6.
For additional layers, for example render elements and utility passes,
the increase in file size is related to the amount of channels saved. In
uncompressed files, the increase in file size can be expressed as the
product of the sample count and 16 (respectively 32) bit for any additional
channel. Since deep images come at the cost of an additional 64 bits per
sample and an additional 32 bits per pixel, saving multilayer deep EXR
files for additional channels instead of single files should be considered,
as single files always have to save the additional depth information but
deep multilayer exrs save it only once (c.f Figure 22).

Figure 21:	 a) Fur rendering, b) pixels with more than one sample, c) sample
count represented as the height of layers

b)

c)

a)

Processor and memory usage

35

Processor and memory usage

Deep images are generated in 3D rendering and used in compositing.
Hence, these two areas’ performance needs to be evaluated in order to
draw a conclusion about the influence on performance from deep image
data on common IT infrastructure.
The way a 3D rendering uses the hardware differs slightly from the way
hardware is used in compositing. Usually, render times for 3D renderings
are much higher than 2D render times. The usual performance footprint
of a 3D rendering is a 100% processor usage for the time a bucket is
calculated. During that time memory usage increases, as the bucket is
written to memory and then written to disk or a network storage. Thus,
the network load is most of the time very low, only becoming a little
higher once a bucket or frame is written to disk. The bottle neck is clearly
the CPU for 3D rendering. However, depending on the complexity of the
scene and texture maps, memory can increase as well, as all this needs to
be loaded into memory before rendering.
In compositing, network and memory are much more important, as
the ultimate aim is to have a (close to) real time feedback. Thus, image
data has to be accessed at a very high frequency and caching it to disk or
memory helps a lot to speed this up.
As mentioned before, deep images produce larger files based on their
nature of saving multiple samples per pixel. This is also the primary
reason for decreased performance, influencing especially memory and

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000
sample count

deep.back

deep.front

a

b

g

r
deepdeep from flatflatflat

bits

Figure 22:	 Total bits per file and the corresponding repartion of the channels

Performance

36

network usage.

The following performance tests were done with a batch script launching
the command-line performance measuring tool typeperf and a
command-line 3D rendering process. Two different scenarios were used,
one volumetric and one with fur, as fur is something that has a lot of
semi-transparencies. Looking at the figures of the fur rendering (Figure
23), we see, that the graphs differ insignificantly. The additional depth

information is gathered in the ray tracing process anyway and there is not
that much more data (150%) written out, so it doesn‘t influence memory
usage and network writes much more.
The volumetric rendering (Figure 24), in contrast, shows big differences
between the deep rendering and the reference rendering. Writing deep
data takes approximately two and a half times as long as the reference
rendering. We can spot a higher memory usage which can be derived by

0

20

40

60

80

100

120 Mbytes sent/sec

Memory %

abs processor time %

Mbytes sent/sec deep

Memory % deep

abs processor time % deep

Figure 24:	 Performance monitoring VRay rendering (smoke)

0

20

40

60

80

100

120

Mbytes sent/sec
Memory %
abs. Processor time
Mbytes sent/sec deep
Memory % deep
abs processor time % deep

Figure 23:	 performance monitoring of a VRay rendering (fur)

Processor and memory usage

37

the buffered image and, respectively, the single buckets held available in
memory. In addition, the amount of data that has to be sent through the
network interface to a central server is a lot higher than with a traditional
image rendering. Nevertheless, it still doesn‘t reach critical amounts in
this test and stays under the practical throughput of 100 Megabytes per
second of a standard Gigabit interface. This is most likely the minimum
connection type adopted by most of the industry14. Still, this increased
network traffic needs to be considered when looking at distributed
rendering with a render farm, as most facilities are using. In that case, the
network load will add up with every rendering node posing a heavy load
on the server.

Looking at performance influences on compositing with deep images
(Figure 25), we see that the difference is already much more apparent. In
this case, a deep image was rendered as normal 2D EXR. In comparison
to the processing of a normal image, the processor usage is much higher
with deep images. This is due to the elevated amount of data that has to
be processed. Additionally, a conversion from a deep image to a traditional
image is done and involves resampling and thus needs processing
power. Whereas for a normal image, the whole processing power isn‘t
even needed. Also, memory usage is drastically elevated, as the image
gets loaded into RAM. The most striking parameter, however, is network
usage. It tops out around 110 Mbytes and only falls during the processing
time. This processing can be attributed to the conversion into a flat image.
A deep image is first loaded into memory when it needs to be processed. Its
size in memory corresponds approximately to the uncompressed file size.
If the files are too large, they are not cached, but only read sequentially. In

14		 c.f. Novy, D. in Okun & Zwerman. 2010. p. 808

0

20

40

60

80

100

120
Mbytes received /sec flat

Memory % flat

Abs Processor Time % flat

Mbytes received /sec

Memory %

Abs Processor Time %

flat

Figure 25:	 Performance of a Nuke rendering

Performance

38

the GUI mode, only visible scanlines are cached.
To view the image, a two-dimensional version of the deep image needs to
be processed. It is then cached to disk, so that the information as a whole
only has to be evaluated when changing aspects that depend on the
additional depth samples, not when viewing it again.
Figure 26 shows the performance graphs for a rendered sequence involving
a DeepMerge of a smoke element and two teapots. The single frames can
clearly be identified in the graph: at the end of each frame memory usage
sinks back to nearly zero when the cache is cleared for the next frame.

As the amount of data that has to be moved poses a big problem
for connection speeds, working from local drives should give better
performance than working from a network share. In the following test,
two deep images of approximately 10GB each were merged and then
written as a flat EXR image. The results show that there is a great increase
in performance with faster interfaces and drives (Figure 27). The dents seen
in the read and write graphs can be explained by the processing of the deep
data which, in this case, is the merge operation and the transformation to
a flat image. It can be seen that during these dents the processor time goes
up to nearly 100%, which confirms the above explanation.
With this finding, it becomes clear that high transfer speeds are important
as long as the processing is fast. But if the processing takes long, the IO
operations have to wait and the processor becomes the bottle neck.
The above scenarios never involved reading and writing deep images at
the same time, since the main application will be to render flat images

0

20

40

60

80

100

Mbytes sent/s
Mbytes received/sec
Memory %
abs processor time %

Figure 26:	 Performance of a Nuke rendering, smoke sequence

Processor and memory usage

39

from deep images. A conversion from one deep file format to another
would involve a simultaneous read and write process of deep data.
Figure 28 shows the test results of Nuke converting a vrst file to an
Open EXR 2.0 file. The write operations are much slower than the read

0

20

40

60

80

100

0

20

40

60

80

100

120

0

50

100

150

200

250
Write Mbytes/sec
Read Mbytes/sec
Memory %
abs processor time %

Read from server

Read from local HDD

Read from local SSD

Figure 27:	 Performance comparison of server, local HDD and local SSD

Performance

40

operations. Additionally, as the data doesn‘t have to get sampled, the
processor usage is lower.
The impact of deep images on compositing are apparent. Due to the
elevated amount of data that needs to be loaded, cached and processed,
processing times rise and make a real-time feedback nearly impossible. To
allow for a smooth work concepts like proxies or regions of interest should
be considered. These are further discussed in chapter 6.

Network

As previously mentioned, visual effects facilities usually distribute the
rendering onto a multitude of machines - a render farm. The source and
output data is stored on a central server. As several render nodes read and
write to and from this server at the same time, it is a crucial factor for the
performance of the infrastructure. With the increased file sizes of deep
images, this becomes even more important. The following performance
test is exemplary and is meant to show problem areas and limitations
of deep image rendering. As the performance of a network depends
on a multitude of different factors, the goal of this test is not to find an
ultimate solution for the handling of huge deep data renderings but rather
to illustrate problem areas and identify behaviors and patterns of such a
rendering process. In the following performance test, the network load
on the server is tested for a VRay rendering. The rendering consisted of
50 frames of CG fog. The resolution was 2048x1556 pixels with a maximal
sample depth of 800 samples per pixel. The resulting files have a size
of approximately 10 GB per frame. The reference rendering on a single
machine (with otherwise un-used network) took 7:51 minutes. The test

0

20

40

60

80

100

120
Mbytes sent/sec
Mbytes received/s
Memory %
abs processor time %

Figure 28:	 Performance of a Nuke rendering, reading and writing a deep file

Network

41

0

100000000

200000000

300000000

400000000

500000000
write bytes/sec

Figure 29:	 Network trafic (write bytes) of the server

0

20

40

60

80

100

120

0

20

40

60

80

100

120

Mbytes sent/sec
Memory %
abs Processor time %

Figure 30:	 Examplary performance of a render node (top) and reference of the
same (bottom)

Performance

42

setup used a total of 16 render nodes, which would translate to a small
studio‘s setup. The server‘s network interface traffic was monitored with
munin15 and a custom script which recorded the output. Typeperf was
used to monitor every render node with the same setup as previously used
for the standalone tests. Looking at the server‘s incoming network traffic
(Figure 29), a short first peak around 435 MB/sec can be observed. This
quickly drops and stabilizes around 200 MB/sec. Throughout the whole
rendering process, the server stayed responsive. At first look, this seems

15		 c.f. munin-monitoring.org

0

100

200

300

400

500

600

0

100

200

300

400

500

600

network write Mbytes/sec

bytes sent/sec %
abs Processor time %

server:

render nodes:

Figure 31:	 Processor time and bytes sent/sec and fall symultaneously to the write
bytes on the server

Network

43

all good. However, a look at the performance figures of the individual
machines reveals a great performance decline. Figure 30 shows the
performance figures of the first frame on the network rendering test. What
is striking is that processor usage is near 100% for the first 100 seconds
and then plummets drastically to stabilize around 20-40%. At the same
time, the network writes drop from approximately 20-40MB to 10-20MB.
This behavior can be noticed on almost all render nodes at roughly the
same time (see Figure 31). Additionally, the network traffic on the server
sinks from 400 to 200MB/sec in exactly the same moment. What can be
deduced here is that the server is slowed down by simultaneous writing
operations of big data from multiple machines. When a certain threshold
is reached the server slows down. Exceeding this threshold will cause
serious loss of performance. What is strange is that the network speed
influences the processor usage. This would be explicable if the image was
directly written to the server. However, I assume that every bucket is
buffered in memory before being written. Consequent on the decreased
processor usage, the rendering takes about twice as long. This is critical
and would present a substantial constraint on a real production.
A similar behavior can be seen for a Nuke rendering on the farm. The
render times of the individual frames go up significantly. Figure 32 shows

the traffic on the server‘s network interface. Figure 33 shows a performance
comparison for one frame using a network rendering compared to a single
rendering. This test used the same merge operation used in the other Nuke
performance tests above and was rendered on a total of 5 render nodes
simultaneously. Even though the maximal bandwidth is not reached, the

0

100000000

200000000

300000000

400000000

500000000
write bytes/sec

Figure 32:	 Write Bytes/sec on the server during a Nuke network rendering

Performance

44

render times get longer.
The insight gained from this analysis shows how crucial the server is
in such an infrastructure. In this case, it is the bottleneck. Before deep
compositing is used in production, the network infrastructure should be
analyzed thoroughly and, where necessary, be adapted to optimize the
use of deep images.

0

20

40

60

80

100

Mbytes sent/sec

Mbytes received/s

Memory %

abs processor time %

0

20

40

60

80

100

120

Figure 33:	 Performance during an examplary frame on a network rendering(top)
and single rendering (bottom)

Compression

45

Compression

To minimize the performance issues that arise when using deep data,
compression is an essential topic. There are two main categories of
compression, loss less and lossy compression. Loss less compression is a
reduction of redundancy, where redundant information is eliminated
and encoded as less data. Loss less compression permits the exact
reconstruction of the original file. Lossy compression, on the other hand,
reduces information which is considered irrelevant or at least less relevant.
However, the original cannot be reconstructed by the decompression –
only a very close approximation to the original.

Deep images introduce additional accurate information into the
compositing workflow. This information has to be as accurate as
possible. Lossy compression would falsify this valuable information and
by that make it useless, as it would again introduce artefacts. Thus, in
the following, I will give a more in-depth look at loss less compression
methods only.
According to Shannon, the maximal compression possible is determined
by the entropy of the source. The more redundancy there is, the more it
can be compressed.16

Compression for deep images is currently using the open-source zlib
compression library based on the „deflate“ algorithm by Phil Katz17. It uses
a combination of the LZ77 algorithm and a Huffman encoding.

The aim of the LZ77 algorithm by Lempel and Ziv is to compress repeated
information. The algorithm makes use of a so called „sliding window“
which defines the length of the known previous data stream. If any
character sequence is identical to the data in the sliding window it is
compressed to a pointer defining how many characters after the beginning
of the sliding window the identical sequence starts, and the length of the
identical sequence.18 19

16		 c.f Shannon, C.E. 1948. p. 14
17 	 c.f. Kainz, F., and Bogart, R. 2011. p. 13
18 	 c.f. Ziv, J., and Lempel, A. 1977.
19 	 c.f. Feldspar, A. 1997.

Performance

46

The Huffman encoding is entropy
encoding similar to the Shannon-Fano
algorithm20. It uses probabilities of
data to weight them and to give often
recurring data a shorter encoding than
data that is used less often. The weights
can either be defined in advance (which
is a less optimal compression) or they
can be calculated by processing the
data prior to the actual compression
process. This will, however, take more
time, since the whole data has to be
evaluated beforehand.
Once every data sequence has a weight,
a Huffman tree is constructed. In the
beginning, the two entries with the
lowest weights are taken to build a
leaf node. Then this node is put back
into the list of data sequences with the
summarized weight of both children.
Then this procedure is repeated until
all data sequences are inserted into the
tree. To deduct the code from the tree,
one has only to add a 0 for the left child
or a 1 for the right child node. High
weighted entries will now sit near to
the root, resulting in a shorter code. Not
often occurring data will be encoded
with a longer code, which is not a
problem since it occurs very rarely.

The deflate algorithm reduces file size by reducing redundancy first
with the LZ77 algorithm and then with entropy encoding the whole data
stream. A photographic image usually gets compressed to 45-55% of the
original image21. The more regular an image is, and therefore the higher
the redundancy is, the higher the compression ratio can be. A very noisy
image tends to be hard to compress with the deflate algorithm.

20	 c.f. Feldspar, A. 1997. 	
21		 c.f. Kainz, F., and Bogart, R. 2011. p. 13

A B C D E
7 4 2 5 9

A D E
7 5 9

E
9

B
4

C
2

BD

9

D A

E
5 7

9
DA

12
BDE

18
root

B
4

C
2

BD

9

D A

E
5 7

9
DA

12
BDE

18

B
4

C
2

BD

9

D A
5 7

DA

12

B
4

C
2

BD

9

Figure 34:	 Building a Huffman tree

47

Compression

However, the deflate algorithm allows for a very fast decoding which is
very important for compositing tasks, as they need to be the closest to real
time as possible.22

The deflate algorithm in EXR can be used on tiles and on scanlines. In
practice, scanlines will give faster access times for use in Nuke. This is
because Nuke‘s viewer is scanline based. At a zoom ratio of 1/n only every
n-th scanline is retrieved from the file and therefore, using scanlines
significantly decreases access times. With a tile based compression this
would not be possible, as the whole tile would have to be retrieved in
order to decode the tile and with that, access the scanline.

Furthermore, as the network is the primary bottle neck for deep
compositing, compression algorithms that compress more, but are slower
to decode, should be considered. If the CPU has to wait for the network
interface, it can process decoding in the meantime and reduce the overall
data that has to be moved.
One such algorithm already used in formats such as JPEG 2000 and also
as part of the compression algorithms used in the Open EXR format, is the
wavelet compression. As the name suggests, wavelet compression is based
on a wavelet transformation that is then entropy encoded comparable
to the way the afore mentioned deflate algorithm works. The wavelet
transformation is an enhancement of the Fourier transformation. The basic
concept behind it is the transfer of information from two-dimensional
space into frequency space. The advantage is that the frequencies present
in the image are much more redundant than a pixel array.

After all, it will always be a trade of file size against accessibility. The
compression will also always depend on the image content and therefore
on the use case. This is why the decision has to be made depending on
the circumstances. For certain cases, even a lossy compression might be

acceptable.

22		 c.f. Kainz, F., and Bogart, R. 2011. p. 13

The visual effects pipeline

48

5  The visual effects pipeline

There are different use cases and workflows in a computer graphics based
media production. The first differentiation should be made between full
CG animation movies and visual effects enhanced live action movies.
With movies like „Avatar“, this separation can‘t always be clearly made
and defined. The lines between the two fields become blurred more and
more23. Still, the workflows and pipeline requirements differ. In a CG
animation movie all the content is purely computer generated. Therefore,
the shot count often exceeds by far even those of visual effects heavy
feature films. The pictures often have a very specific look but usually
don‘t need to look photo-real24. In contrast, visual effects for live action
movies usually require completely photo-realistic computer generated
imagery that needs to blend seamlessly with live action plates. However,
those visual effects usually only make up part of the film. Therefore, the
amount of shots is smaller compared to an animation film.
A further differentiation for the use of deep compositing should be made
for the different rendering workflows that the various studios have
adopted. This usually goes hand in hand with look development. This
process can either be situated more on the side of the 3D department,
trying to define the look in rendering, rendering out a perfect image, or
it can be achieved in compositing, by rendering a lot of additional render
passes, enabling the compositing artist to tweak most parts of the image
after the rendering25. The border between them is very fluent. Often, a look
development artist is experienced in lighting and rendering as well as in
compositing and changes aspects of both on the fly in an iterative process.
The emphasis on either workflow will unquestionably also depend on the
size of the company. Larger facilities will most likely have the additional
manpower to have a separate person responsible for look development
only. Also, re-rendering, and therefore defining the look in rendering, is
easier for bigger companies with higher computational power than for
small companies. Small facilities will most likely keep a maximum of
flexibility in compositing to respond to change orders quickly without the
need of long render times. A further distinction should be made between
rendering different elements separately and rendering all as one.

23		 c.f. Bugaj, S. V. in Okun & Zwerman. 2010. p. 737
24		 c.f. Bugaj, S. V. in Okun & Zwerman. 2010. p. 738
25		 c.f. Bredow, R. in Okun & Zwerman. 2010. p. 747

49

With this finding we can now look at different workflows and evaluate
how they would perform with the use of deep data.
For an element based approach, deep compositing makes a lot of sense. It
allows for correct compositing of the different elements and an automated
merging process when they are interleaved in space. This approach gives
more flexibility as the single render times of the different elements can
be decreased. When one element changes, only this element has to be re-
rendered. This leads to lower overall render times and with that, faster
turnarounds. Another advantage is the decreased memory usage. In the
past, holdout geometry had to be included in the scene which increased
memory consumption. The decreased memory usage helps a lot when
rendering either highly complex geometry (that wouldn‘t fit into memory
otherwise) or rendering on machines with less memory installed.
Such a split-up will for sure not work if elements influence each others
appearance, as with global illumination or shadowing. Still, rendering
everything separately usually brings down the render – times even if
the whole scene needs to be loaded as the overall computation is usually
decreased.
Rendering everything in a single pass, on the other hand, reduces the
overall render time in a single rendering. In this case, deep images permit
the manipulation of single elements of the rendering individually, even
though they were rendered in one pass.

For a workflow that is based on tweaking the image in compositing, it
would appear that deep images bring an even bigger amount of data. At
the same time, though, it also brings much higher flexibility to manipulate
single elements of the rendering distinctly in compositing. Individual
parts of overlapping semitransparent areas can be changed without
influencing the overlapped objects in front or behind. This strategy means
rendering less often and with that, bringing render times down.

For feature animation movies, deep compositing also makes sense. With
the high shot count and complete sequences, certain elements can be
reused. Also, as the whole image is computer generated but usually is split
up for rendering, it makes a lot of sense to use deep images to automate
the compositing process to a certain degree. As there will usually be a
lot more elements that all have different revisions and changes, it helps
to make them independent from each other in rendering and thus save
render times by re-rendering only single elements. This may mean a lot

The visual effects pipeline

50

more data, but as shown in Chapter 4, this is only critical on volumetric
renderings. And these bring a huge benefit again, so their use is legitimate.

Pushing more and more data over to the compositing artist allows for
quick changes and no necessity to re-render. At the first glance, this is a
huge time benefit. Still, even though most of the images don‘t have to be
re-rendered from 3D, the data processing in compositing is increasing. The
question is: is this a real time saving or is it only a shifting of work to the
compositing department?
If we compare traditional
3D render times and deep
compositing render times, we
can still see the advantage
deep compositing brings in a
workflow relying intensively
on re-rendering caused even by
small changes. Renderings often
include a lot of redundant data
and rendering steps that can be
eliminated with deep images.
Even though the render times on the compositing side go up, these still
don‘t reach those of 3D renders, as they don‘t have to account for any
light interaction but only need to basically resample the image. This is
especially true for volumetric renderings, which usually have long render
times. For the fire rendering seen in Figure 35, 3D rendering time was 5
minutes and 49 seconds as opposed to 23 seconds for the rendering of
the compositing. This is approximately 6% of the time the 3D rendering
took. With the lack of interactivity, the overall time spent in compositing
might go up, but this can be avoided using proxies (see Chapter 6). The
additional time used preparing the images, or the time spent on the
gained flexibility in compositing, can be approximated as being equal
to the time otherwise spent by the 3D department. Compared to render
times, this time is usually relatively low.

With all the information moving further down the pipeline into
compositing, the artists get an overall increase of flexibility. Still, we have
to revisit our traditional visual effects pipeline. The 3D department that
used to spit out images that would be composited with live action plates
and other elements, is moving more and more towards asset creation

Figure 35:	 Fire rendering, deep

51

only. Instead of (almost) final images they start to provide a whole range
of data in various formats and of different content. The creation of the
virtual representation of physical objects is becoming the central task
of the 3D department, with less and less focus on images. The whole
creation of images is moving towards the visually oriented compositing
department. Formerly referred to as the 2D department, this name
already became obsolete with the introduction of 3D space and projection
techniques to compositing packages, and is ever getting less appropriate
with compositing integrating more and more traditional 3D tasks such
as rendering. In the past few years, a move towards an additional link
in the pipeline has taken place. The task of look development as an
intermediate process between asset creation and asset integration is
spreading throughout the industry. This is not clearly necessary but it is
a move that allows rebalancing the burden and workload put onto the
compositing department as work transitions from 3D to compositing. It is
also a question of resources and studio size whether this additional link is
possible and makes sense.
The lines will be getting blurred even more than they already are,
demanding for ever more flexible and versatile artists who understand
the whole pipeline and who have an understanding of the need and
potential of solving ever more complex problems and visions.

Workflows

52

6  Workflows

In the following, I am going to demonstrate some exemplary workflows
and useful concepts concerning the use of deep compositing.

Proxies - an essential concept for dealing with large data sets

The word proxy usually defines someone who acts as substitute for
another26. In computer graphics, this usually means the use of lower
detailed information as substitute to very big but precise data. Proxies are
broadly used to allow for greater interactive manipulation of large amounts
of data. In compositing, this often includes lower spatial resolution and
lossy compressed imagery. On the 3D side, proxies are usually low poly
representations of geometry. These proxies are used during manipulation
of the data to assure a certain amount of responsiveness and are replaced
at render time with the data they are substituting in order to still
produce correct images. Considering the large file sizes of deep images it
is indisputable that a deep compositing workflow would greatly benefit
from the use of substitutes of smaller file sizes. This is especially true for
volumetric deep images as these are, as mentioned previously, the ones
that are critical to an interactive workflow. For volumetric data it makes
a lot of sense to use lower sampled proxies that allow for responsive
compositing. Figure 36 shows the linear correlation between the sample
count, file size and render times for an exemplary proxy. The increase
in response on a compositing script can be easily and distinctly derived
from this finding. The accuracy of the volume is in most of the cases less
significant; for example, it will be more important that the character is
covered in fog than if he stands two centimeters further back. Also, such
a placement can be numerically determined or judged spatially in a 3D
view. Another possibility for deep image proxies – just as for traditional
image proxies – is to use a lower spatial resolution, in this case, in x and
y. This might be particularly useful for deep images where precise depth
information is critical. Lower sampled proxies can easily be generated
by resampling depth samples. Nuke‘s existing proxy system can be used
to work with deep image proxies – just as with traditional flat images.
The path to the proxy file needs to be set in the DeepRead node and then
everything works as usual.

26		 c.f. Oxford Advanced Learner‘s Dictionary of Current English

Region of interest

53

Figure 37:	 Node construct for a deep
region of interest

Region of interest

Another concept in computer graphics to improve a fluent interaction
with huge amounts of data is the region of interest. The region of interest
usually only shows and calculates data in a user defined window. The
window is set to the portion of the image that is of interest and which
also defines the visible area. For deep compositing such a concept makes
a lot of sense. As seen with the proxies, we have two ways to do this. The
traditional way is exactly the same as
with flat images and consists of a two-
dimensional region of interest in the xy
plane, that is, the viewing plane. This
functionality can be accessed through
Nuke‘s region of interest that works for
deep images in the same way it does
for traditional images. But since deep
images offer a third dimension, it is
possible to make use of this dimension
as well. A region of interest should,
therefore, preferably be a box in space

0 0

20000000

40000000

60000000

80000000

100000000

proxyfull

samples rendertimefile size
50

1000

1,04 sec

28,03 sec

MB

samples

Figure 36:	 File size, rendertime and sample count of an original and a proxy

Workflows

54

– or rather a pyramid for perspective projection – that delimits the region.
Such a region of interest can be achieved through DeepCrop. Yet, it can
be useful to see samples outside of the region of interest but not have the
whole data overhead. This can be especially appropriate if an element
is placed in the front third of a fog. The other two thirds can be easily
represented with a single sample per pixel, as the depth information is
not needed. Such a functionality can, to some extent, be accomplished
with a couple of DeepNodes. Figure 37 shows the setup for this. The region
of interest is selected through DeepCrop. The inverse selection is made
setting the keep outside check boxes. This is then flattened through
DeepToImage and brought back as DeepImage with the DeepFromImage
operator. Merging both streams gives us a deep image with a single
sample outside of the region of interest.

When to use deep images

An important part when working with deep images, at least for now,
is deciding at which point to switch back to traditional images. As the
processing and supply of deep image data is, due to the large file sizes,
a very performance limiting factor, it is recommendable to switch back
to traditional images as soon as the additional information provided by
deep images isn‘t needed. The deep image operations are preferably done
in a separate Nuke script to assure the highest performance possible. For
volumetric deep images, the most common task will be to create holdout
mattes. Once the holdout is created, the workflow should be switched over
to a traditional flat image workflow.

Integration of live action with computer generated deep images

Up until here, this document covered combining different computer
generated deep images. The most common use in visual effects will,
however, be the combination of plate photography with CG elements
and objects. To achieve this, the live action plate has to be converted to
a deep image. The process is similar to a stereo conversion, giving every
point in space a specific depth. This can be achieved with common stereo
conversion techniques such as depth maps or projection onto geometry. In
any case, the process involves separating different objects by rotoscoping
them. With a depth map, the translation to a deep image is fairly simple.
The DeepFromImage node does this conversion and uses the depth

Integration of live action with computer generated deep images

55

channel for the depth.
Yet the way depth is
usually represented in
Nuke‘s zDepth channel,
and the precise real
world values represented
in deep images, differ.
The DeepFromImage
node expects the zDepth
channel to be the way
Nuke‘s built-in scanline
renderer outputs it –
which corresponds to
1/distance from camera.
In order to match scene
scale and positioning in
depth, one will need to provide the depth channel in this notation. As
anti-aliased depth information is wrong depth information, it is also
important to unpremultiply the depth channel or one will have pixels
floating around. In the case of overlapping objects, it is also best to treat
them separately and combine them once converted to a deep image.
This is the only way to get clean deep images from a live action plate.
Figure 38 shows the different steps in a conversion to a deep image. Once
converted to a deep image, the plate can be merged and altered in any
way a CG rendered deep image can. For simpler tasks, it is useful to use
a DeepHoldOut node that outputs a two-dimensional image held out
with the live action plate. This can then be merged in the traditional two-

dimensional way.

Figure 38:	 Process of DeepMerge with live action:	
a) source b) fog c) depth map d) hold out 	
e) result f) point representation

a)

c)

b)

d)

e) f)

Outlook

56

7  Outlook

All the aspects mentioned up to this point are the fundamental aspects of
deep image compositing. This is what is possible out of the box until today.
Looking deeper however, it becomes obvious that the additional depth
information allows for far more. Combined with other data available to
the compositing artist, additional possibilities start to arise permitting a
much more efficient and flexible workflow. The more information is being
provided in the image files, the more missing information can most likely
be calculated. Giving the compositing artist information gives him the
power to quickly change many aspects of the final image and allows him
to apply client‘s change orders instantly without the large burden of a CG
rendering.
In the following chapter, I‘m going to introduce some additional options
that can become possible with the installment of a deep compositing
pipeline.

Deep Object IDs

A compositing artist often needs to alter individual parts of images and
objects. Usually these areas are defined manually by drawing mattes for
the corresponding areas. As the information about an object is already
available for computer generated imagery, this matte generation can be
automated. This leads to much more precise mattes and a lot less work.
These Object IDs are usually rendered out as colored images where
each element has a different color. Yet, since every color is described
by an amount of red, green and blue, semitransparent edges often get

contaminated with other colors. Therefore, often only red, green and blue
are used which limits the amount of mattes per layer to 3. Deep images
now allow, due to their spatial separation of overlapping samples, every
color as an object ID. This greatly increases flexibility as a large amount of

Figure 39:	 a) rendering, b) object ID pass c) isolated object

a) b) c)

Vector blur that works for overlapping objects

57

mattes can be rendered by default rather than only rendering important
parts. This avoids big file sizes. The combination of deep images with object
IDs then allows for a distinct selection of specific objects and elements
even if they overlap other objects in semitransparent areas.

Vector blur that works for overlapping objects

Vector blur is often used to achieve a cheap „fake“ motion blur in
compositing without the need of calculating sub-frames. To apply a
vector blur, a vector pass has to be rendered from the 3D package. This
usually consists of any x component of the velocity from the point of
view of the camera stored in the red channel and the y component of
the velocity stored in the green channel. This vector pass then drives a
directional blur that, dependent on the direction and magnitude, blurs
every pixel independently mimicking a motion blur. This works well for
single objects that have translation in x and y only. However, for more
complicated transformations and overlapping objects, it fails27. The only
real solution is to render it directly in the 3D package.
As outlined so far, the benefits of deep compositing lie in solving problems
caused by overlapping objects. So it should help with Vector blur as
well. Using a deep vector pass and a deep image, we should be able to
do the directional blur separately for every depth, therefore allowing for
a realistic blurring. Only the moving object would be blurred and not
anything that overlaps. Still, this would expose holes behind the object
which gets semitransparent due to the blur. As it was an opaque object,
the ray tracing algorithm didn‘t continue; therefore, no additional depth
samples were created, leaving behind a hole. Of course, rendering these
objects separately would also resolve the problem; but in case this is not
possible, or advisable, the above solution could make sense.
So to make use of a deep vector blur, more would need to be rendered than
seen through the camera. With this overlap, a true representation of a
motion blur of overlapping objects could be achieved. To avoid exploding
render times and file sizes, the amount of overlap could be derived from
the shutter and maximum velocity.

As seen by some examples above, it is reasonable to render deep utility
passes. These rendered deep utility passes usually include detailed
information that should be unbiased in order to allow for a correct use in

27		 c.f. Spears, D. in Okun & Zwerman. 2010. p.687

Outlook

58

compositing. With the findings concluded above, it is indisputable to say
that the additional memory needed to store the passes is negligible, at
least for non volumetric imagery, and especially given the value it adds.

Deep Mattes

Mattes are a fundamental part of compositing. Whether it is to cut out
parts of an image or to grade only a specific area, mattes are always used
in compositing. In order to work effectively with deep images, there needs
to be a way of using three-dimensional mattes, similar to a world position
pass, where it is easy to use geometric primitives to mask a particular
region. The advantage of masks generated with a world position pass
is that the masks are consistent throughout different shots as they are
expressed in absolute world coordinates. This allows for a very effective
masking that can be adopted to all shots of a specific setup. With deep
images and, especially with the use of volumetric effects, this becomes
even more handy, as volumetrics can be further shaped and adapted
to the scene. There are two different ways to implement such masking
features into Nuke. The first is to calculate the world space coordinates of
a deep image and then compare them, similar to what was already done
with world position pass masks, with a mathematical representation of
the corresponding geometric primitive. The other option is to transform
the geometric primitive into a deep image with the deep.front value being
the point where a theoretical eye ray enters the object and the deep.back
where the ray would exit the object again. A traditional zBuffer algorithm
can easily be modified to save a deep zBuffer.
„The z value of any new point to be written into the buffer is compared
with the z value of the point already there. If the new point is behind, it is
discarded. If it is in front, it replaces the old value.“28

Instead of using a two-dimensional buffer, we use a deep buffer that, like
the deep image buffer, stores an arbitrary list of samples per pixel. Further,
instead of discarding a value, if its z value is inferior, we simply append it
to the list. To build a volumetric representation of a geometry, contiguous
samples then have to be checked for their object affiliation. Moreover, it
has to be determined if a sample is an entry or an exit sample. This can
be achieved by setting a flag on every sample of a common mesh. The
first sample will get the flag set to entry and the following samples will
simply invert the flag. If the first sample isn‘t an entry sample however,

28		 Catmull, E.E. 1974. p. 32

Altering the look of volumetric renderings in compositing

59

the algorithm has to be adapted. This could be achieved by checking
the first sample‘s normal direction. The advantage in using a zBuffer
algorithm, instead of a ray tracing algorithm, is speed. And since any
light calculation is unnecessary for this application, we can easily ignore
this drawback of zBuffering.
A fall-off could be achieved by using multiple samples, that could then
have different alpha values. This could then simply be multiplied with
the image that is to be masked. The advantage of the latter method is that
it would not be restricted to the use of geometric primitives but could use
any kind of deep image as an input. Using such a deep mask for a deep color
correction would open up many new possibilities. But the universality of
absolute world coordinates would be lost, hence limiting the convenience
to adopt a mask to another shot.
On the other hand, any conversion between camera space and world space
always implies computation on all samples. Avoiding this will result
in higher performance. The transformation from geometric primitives
in world space to camera space only has to be done once and can be
precomputed. Whereas converting a deep image to world space and back
would be one additional transformation and it would be inefficient to
precompute it. Since a matte is applied more often than it is generated,
saving performance on this operation helps to increase the overall
processing time of a compositing script.

Altering the look of volumetric renderings in compositing

With volumetric effects and particle simulations, the look is often created
by tweaking colors and opacity. However, as the different particles
and voxels overlap in space, the volume can only be shaped before the
rendering process. With the introduction of deep image compositing new
possibilities arise. With the full color and transparency information for
every point in space, the shaping and look development of volumetric
effects, such as smoke and fire, can be achieved in compositing. This allows
for much greater flexibility and the possibility to tweak the appearance of
the effect to integrate it with the other elements. With the clear separation
of spatially independent particles or volume segments, it is now possible
to render any kind of information about the state of the particles or fluids
into an additional channel. Information like velocity, age, temperature
or any other arbitrary parameter can be incorporated and, especially,
distinctly retrieved in compositing. The added flexibility and possibilities

Outlook

60

resulting from this are immense. This valuable information allows the
compositing artist to substantially change the appearance of the effect
without the need to re-render anything. It basically corresponds to
making available a point cache of the simulated particles/volume from a
camera viewpoint, to the compositing artist. As discussed earlier, the 3D
department moves more into asset creation, leaving visual designing to
compositing and/or look development.
In order to use techniques like temperature based color corrections of
volumetric effects, a second implementation for mattes is needed that
greatly resembles the way mattes are used in traditional two-dimensional
compositing. The concept behind this is that one wants to use additional
objects describing a specific state of a certain sample. In this context, it
can be assumed that both images share the same depth samples/depth
values, as the represented object is the same. Usually, this information is
saved in additional channels. But, due to performance issues, there might
as well be separate images. The goal is to manipulate the rgba channels
of the image as a function of the values in another channel/image. This
function should be easily adjustable by the compositing artist. The best
way would be a look up curve that graphs the dependencies between the
mask input and the output of the image.

Volume fog in Comp

Fog and dust are natural phenomenons that influence the visual
perception considerably. The desaturation over depth is a depth clue for
the human brain, allowing us to perceive and identify three-dimensional
relations. The importance of mimicking this behavior when integrating
computer generated elements into photographic plates is evident. Volume
fog can be rendered from a 3D package or be faked with grading later-
on in compositing. With deep images, we‘re able to either use some kind
of depth shader that is easily applied at the transformation from a deep
image to a traditional flat image. Such a dependency can easily be inserted
in the sampling process that converts a deep image to a traditional image.
Like this, any parameter could be made depth dependent – even allowing
for atmospheric distortion over depth.
For more complex fog structures, a fog volume can either be created in a 3D
application or directly and interactively in the compositing application.
Using a four-dimensional noise as basis or the DeepFromFrames and
a Noise as input would allow for the interactive creation of clouds, and

Light interaction

61

alike, on the fly during compositing.

Light interaction

As mentioned before, limitations come as soon as a light interaction with
an object or, even more dramatic, a volume, changes. The rendered deep
image has the illumination baked in and hence needs to be re-rendered.
With traditional renderings, this problem is avoided by rendering light
independently from the object and combining it in compositing. This is
also possible, to some degree, for hard surface deep images. For volumes,
however, this can‘t be done, at least not in the traditional way. „Camera
Space Volumetric Shadow Maps“29 describes Weta Digital‘s approach
to separate deep image volumetrics and shadows. As discussed earlier,
volume intersections allow for the use of deep images as spatial mattes.
This can be used to calculate light interaction with volumes and is often
needed to mimic atmospheric lights also known as „god rays“. The real
solution up to now was to render it in a 3D package which was very time
expensive. With a volumetric deep image and a representation of light
which is basically not much more than a fall-off if it isn‘t occluded, we
can now easily multiply both and get interactive volumetric light in
compositing. For more complex light situations, a workflow as the one
described in „Camera Space Volumetric Shadow Maps“ can be used. The
concept basically involves rendering light rays as deep image in camera
space instead of in light space. In combination with simple volume
representation created in the compositing package, as mentioned above,
this allows for the interactive creation of volumetric lights in compositing.

Building a deep image library

Since render times are precious, it seems logical to use deep compositing
to build up an element library. The advantage over traditional images for
library use is clearly apparent. Instead of only being able to use rendered
elements as classical live action elements, and thus being limited to use
in the background, a deep image library would consist of elements that
permit an interaction with other objects, even after rendering. Like this,
they can be used in a much broader way without the downside of classic
elements that look flat and 2D because of missing depth integration, and
they avoid the bulk of excessive render times for volumetric effects.

29		 Hanika, J., Hillman, P., Hill, M., Fascione, L. 2012

Outlook

62

As seen in prior chapters, the world space location of depth samples can
be calculated. With this in mind one quickly dreams of interactively
changing camera positions to accommodate shot specific needs for
elements, or even fly through a single deep image. Still there are some
aspects that unfortunately complicate this. One is the fact that as soon
as full opacity is reached, no further samples are gathered. The missing
information from occluded objects might thus be revealed by a change of
the camera angle. This can definitely be accommodated for by rendering
occluded objects, continuing ray tracing/ray marching even after an
opaque object is reached or after a point of full opacity. Yet this means
increased computation and thus increased render times. A second aspect
is that in order to represent the pixel samples from a differing angle of
view, some kind of voxel rendering engine is needed. As this involves
true rendering again, I would abandon that idea and rather encourage
building a library of simulated volumetric effects as point caches and re-
render them in times of need for a specific camera angle and/or move.
It is also clear that such a library won‘t be able to provide elements for
every single shot as the specific requirements will vary. As soon as further
interaction is needed that would alter the effect in itself again, there is no
way around a complete new simulation. Light changes can be dealt with
up to a certain degree as discussed previously.
Still, I‘m convinced that certain effects can be used as library elements
and provide value over the use of traditional elements because of the
possibility of creating holdout mattes on the fly. This is true for a large
amount of volumetric effects as well as for particle effects such as rain,
confetti etc. Instead of layering different plates that would still look
layered because occlusion wouldn‘t match 100%, we can get a realistic
placement of our character in the particles. This is especially important
for stereoscopic productions where two-dimensional cheating doesn‘t
work.

Stereo

With more and more stereoscopic movies finding their way into theaters,
their impact on the visual effects industry is tremendous. It does not only
mean doing the work twice for the two different eyes, but it also means
that old tricks that were established over the years and have worked well
for over a decade, can‘t be used anymore. Cheating that would not be
visible on traditional 2D movies now suddenly becomes apparent. This

Stereo

63

means that a lot of work has to be highly exact and three-dimensionally
correct. Having exact depth information in compositing, in order to
holdout computer generated elements, is a huge advantage. It is much
easier to adjust depth of a holdout matte in compositing because the
depth in relation to the elements in the plate can be exactly matched and
verified.
Another important point is that layering is not effective any more, it
appears flat. Gaining additional depth becomes important when it comes
to stereoscopic images. Deep images present a good way of keeping depth
and flexibility.

64

65

8  Conclusion

Deep compositing brings many benefits, two of them particularly worth
mentioning. The first is increased flexibility which is demonstrated by
its capability to render elements independently and combine them in
compositing. The second is the unbiased depth and color information
that deep images present. With this, artefacts caused by inaccurate depth
information are eliminated. As with every good tool, deep compositing
allows the artist to become even more creative, removing technical
headaches posed by structural restrictions.
However, these advantages come at a price – decreased performance.
Especially for volumetric renderings, file sizes can explode and present
a big processing challenge. Therefore, deep images should not be used
blindly. Not every situation needs the additional depth information. The
relation of file size to information is linear, the larger the files are, the
more information they contain. However, more information does not
always mean a better result. Some situations do not require as much depth
resolution, so it is better to keep the file sizes reasonable. Additionally,
handling of large deep images can be optimized by using concepts such
as proxies and region of interest. Volumetric renderings may result in the
largest files but they also bring a huge advantage. And although non-
volumetric renderings don‘t have as big an impact on performance, they
still offer reasonable benefits over traditional images in semi-transparent
areas.
Before deep compositing is used in production, the infrastructure must be
tested and, if necessary, adapted to facilitate a flawless adoption of deep
compositing. Otherwise, the use of deep images can cause serious decline
in performance and a potential breakdown of the network infrastructure.
Still, this is only the beginning. There is great potential in deep images but
the tools to handle them are sparse. This will hopefully change with the
official release of a standard format, namely Open EXR 2.0. In this context,
I would like to advocate for a further standardization to save the camera
matrix in the meta data. This essential information is needed by many
tools, and should be clearly and distinctly embedded into the image itself.
The possibilities offered by deep images will increase greatly once the
tools evolve. The lines between 3D and compositing will get ever more
blurred, introducing more and more possibilities and flexibility. This will
potentially lead to a future of voxel based compositing, where the image
is not the intermediate, but only the final product.

66

﻿﻿

Acknowledgments

I wish to thank Prof. Katja Schmid and Michael Landgrebe for their great
assistance with my work. My special thanks are extended to Holger
Hummel, Justin Daneman and all the other great people at Celluloid
VFX who were a great help and provided an exeptional work atmosphere
during my research. I am grateful to Vladimir Koylazov from Chaos Group
and Colin Doncaster from Peregrine Labs who provided me Software and
in depth technical knowledge. Advice given by Johannes Saam, Jonathan
Egstad, Peter Pearson, Denis Scolan, Ivan Busquets and every one else
on the Nuke mailinglist has been a great help. Assistance provided by
Sebastian Elsner was greatly appreciated. My thanks to Stefan Seibert,
who wrote plugins to validate my ideas. I would also like to acknowledge
the support provided by my family during the writing.

﻿

67

Appendix A – References

Okun, J. A. & Zwerman, S. 2010. The VES Handbook of Visual Effects. Elsevier

Lokovic, T. and Veach, E. 2000. Deep Shadow Maps. SIGGRAPH Comput.
Graph.,385-392

Heckenberg, D., Saam, J., Doncaster, C., Cooper, C. 2010. Deep Compositing
www.johannessaam.com/deepImage.pdf (accessed 17.03.2013)

Kainz, F., and Bogart, R. 2011. Technical Introduction to OpenEXR. https://github.
com/openexr/openexr/blob/master/OpenEXR/doc/TechnicalIntroduc-
tion_2.0.pdf (accessed 17.03.2013)

Harvey, V., Brady, A., Ring, D., Binks, J., Wadelton, J., Hughes, M. 2013. NDK De-
veloper Guide http://docs.thefoundry.co.uk/nuke/70/ndkdevguide/in-
tro/intro.html (accessed 17.03.2013)

Akenie-Möller, T., Haines, E.,Hoffman, N. 2008. Real-Time Rendering Third Editi-
on. A K Peters

Shannon, C.E. 1948. A Mathematical Theory of Communication. Bell System
Technical Journal, Vol. 27, pp. 379–423, 623–656

Ziv, J., and Lempel, A. 1977. A universal algorithm for sequential data compression,
IEEE Transactions on Information Theory, v.23 n.3, p.337-343

Feldspar, A. 1997. An Explanation of the Deflate Algorithm. www.zlib.net/feld-
spar.html (accessed 17.03.2013)

Wehmeier S. 2000. Oxford Advanced Learner‘s Dictionary of Current English.
Oxford University Press

Catmull, E.E. 1974. A Subdivision Algorithm for Computer Display of Curved Surfa-
ces. The University of Utah

Hanika, J., Hillman, P., Hill, M., Fascione, L. 2012. Camera Space Volumetric
Shadows. DigiPro‘12 p. 7-14

﻿

68

Appendix B – List of Figures

Figure 1:	 An illustration of the sample gathering proess� 10
Figure 2:	 Antialiased(left) and aliased(right) edge� 12
Figure 3:	 zMerge: Merge of a) and b), c) unfiltered, d) filtered, e) DeepMerge� 13
Figure 4:	 a) zBlur b) Frischluft c) Bokeh� 14
Figure 5:	 a) deep rgba b) deep alpha c) zDepth� 15
Figure 6:	 A refracting object with the backgrond cropped� 16
Figure 7:	 Teapots(a) get merged with fog (c) traditional holdout(b), d) and e) show

the possibility to rearrange in compositing� 17
Figure 8:	 removing the object in a) reveals a hole(b)� 17
Figure 10:	 A world position pass(left) and a matte created from it (right)� 18
Figure 9:	 merging the cubes left and right produces a rough edge (middle)� 18
Figure 11:	 settings for the stereoscopic helper� 20
Figure 12:	 Point representation of a cube(left) and the same with DeepTransform

with noise as mask applied(right)� 22
Figure 13:	 Result of a DeepColorCorrect restricted to a specific depth slice� 23
Figure 14:	 Output of the DeepToPoints node� 24
Figure 15:	 Relations between points in 3D space and their projection onto a 2D

plane� 25
Figure 16:	 Control panel of the DeepSample node� 28
Figure 17:	 Depth graph with a single pixel sampled (top) and a region sampled

(bottom)� 29
Figure 18:	 The distorted result of DeepToPoints (left) and the correct result 	

(right)� 30
Figure 19:	 Relation of sample count and uncompressed filesize� 32
Figure 20:	Bit depth of the elements that make up an OpenEXR 2.0 deep image� 33
Figure 21:	 a) Fur rendering, b) pixels with more than one sample, c) sample count

represented as the height of layers� 34
Figure 22:	 Total bits per file and the corresponding repartion of the channels� 35
Figure 23:	 performance monitoring of a VRay rendering (fur)� 36
Figure 24:	Performance monitoring VRay rendering (smoke)� 36
Figure 25:	 Performance of a Nuke rendering� 37
Figure 26:	Performance of a Nuke rendering, smoke sequence� 38
Figure 27:	 Performance comparison of server, local HDD and local SSD� 39
Figure 28:	 Performance of a Nuke rendering, reading and writing a deep file� 40
Figure 29:	 Network trafic (write bytes) of the server� 41
Figure 30:	Examplary performance of a render node (top) and reference of the

same (bottom)� 41

﻿

69

Figure 31:	 Processor time and bytes sent/sec and fall symultaneously to the write
bytes on the server� 42

Figure 32:	 Write Bytes/sec on the server during a Nuke network rendering� 43
Figure 33:	 Performance during an examplary frame on a network rendering(top)

and single rendering (bottom)� 44
Figure 34:	 Building a Huffman tree� 46
Figure 35:	 Fire rendering, deep� 50
Figure 36:	 File size, rendertime and sample count of an original and a proxy� 53
Figure 37:	 Node construct for a deep region of interest� 53
Figure 38:	 Process of DeepMerge with live action: a) source b) fog c) depth map 	

d) hold out e) result f) point representation � 55
Figure 39:	 a) rendering, b) object ID pass c) isolated object� 56

﻿

70

Appendix C – Nuke bug list

#31474 DeepRead width and height via Python return root format
Using Python to read out the width and height of a DeepRead node
(n.width() with n beeing the DeepRead), width and height of the root
format and not of the DeepRead node are returned.

#27372
Expand the functionality of the DeepExpression node to match the regular
Expression node.

#32583 Feature Request: Scanline renderer deep output
The scanline renderer should output deep data.

#32759 DeepWrite compression
Only Zip(1 Scanline), is supported for deep EXRs. In that case the dropdown should
only have that option.

#32819 isDeepFilename() should spot EXRs that have deep data
The isDeepFilename() in nukescripts/create should be adapted to spot
EXRs that have deep data. As Drag and drop and the „R“ shortcut fail
otherwise, defaulting to a normal Read node instead of DeepRead.

#32828 node.channels() on deep nodes returns []
When calling node.channels() on a deep node an empty list is returned instead of
the channels one gets with a normal IOP node.

#32859 deep image: copied layers don‘t show in viewer
When copying rgba from a deep image to a custom layer(e.g. layer 1) with a
DeepExpression node, it will copy the values but won‘t be visible in the
viewer, when selecting layer1.

#33184 distorted pointcloud in DeepToPoints
The pointcloud from DeepToPoints gets distorted if the bbox of the image differs
from the format.

71

﻿

#34208 Feature Request: Visualization of Deep Volumes
A representation, e.g. streaks instead of points for volumetric samples, that alow
to distiguish these and to evaluate their depth is strongly encouraged.

#34492 Error loading EXR 2.0 bigger than 2GB (on Windows)
Writing out 16bit half Zip(scanline) deep EXRs(2.0) from Nuke and loading them
back-in with the DeepRead, one of the following error messages appears if the file
is larger than 2048 MB:

DeepRead1: Invalid argument.
DeepRead1: Error reading sample count data from file“...“. Unexpected end of file.
DeepRead1:Domain Error.
DeepRead1:No such file or directory.

Appendix D – Content of the DVD

Contents of the attached DVD:

•PDF version of this Thesis
•all illustrations
•Nuke setup displaying the use of basic deep operations
•the corresponding sample files
•3ds Max setup to create deep images

	Eidesstattliche Erklärung
	Abstract in English
	Abstract auf Deutsch

	Motivation
	Disclaimer
	Definitions
	Target Audience

	1 What is Deep Compositing?
	2 Comparison to traditional concepts
	zMerge
	Preserving color values/corresponding to zCrop/zSlice
	Volumetrics
	What it can‘t do

	3 Implementation
	Autodesk 3ds Max and Chaos Group‘s VRay
	The Foundry‘s Nuke

	4 Performance
	File size
	Processor and memory usage
	Network
	Compression
	Compression

	5 The visual effects pipeline
	6 Workflows
	Proxies - an essential concept for dealing with large data sets
	Region of interest
	When to use deep images
	Integration of live action with computer generated deep images

	7 Outlook
	Deep Object IDs
	Vector blur that works for overlapping objects
	Altering the look of volumetric renderings in compositing
	Volume fog in Comp
	Light interaction
	Building a deep image library
	Stereo

	8 Conclusion
	Acknowledgments
	Appendix A – References
	Appendix B – List of Figures
	Appendix C – Nuke bug list
	Appendix D – Content of the DVD

